

CLAS UPGRADE = CLAS12

01/09/2008

lrfu

œ

saclay

Physics constraints:

- higher momentum tracks, smaller cross sections
- Detector goals:
 - 1% momentum resolution at 5 GeV/c
 - capability to run at L= 10³⁵ cm⁻²s⁻¹, good vertex resolution, reliability.

Detector designs:

Forward detector: (electrons, forward mesons)

- Addition of high threshold Č counters to improve e⁻ and π id.
- Preshower to increase granularity of the calorimeter and discriminate π^0 and $\gamma.$
- Revamping of regular equipment, DCs cells reduced, Torus modified to handle angular range from 5 to 40° (was 8 to 142°)

CENTRAL DETECTOR

5 T Solenoid

Central Vertex Tracker

Forward vertex Tracker

Central Time of Flight

Neutron counter

Trigger rate : 10 kHz

Singles rate : 2 – 20 MHz

Bulk MM tracker Project

Mixed solution: Silicium + Micromegas bulk

- Central detector
 - 2 planes of Silicium (X,Y)
 - 3 cylindrical bulks (XY): 3m², pitch 0.6 mm ,10k channels.
- Forward detector ۲
 - 4 plane bulks (XY): 1 m², 3k channels.

What is a bulk Micromegas ?

The basic idea is to build the whole detector in one process: the anode plane with the copper strips,

a photo resistive film having the right thickness, and the cloth mesh

are laminated together at high temperature, forming a single object.

By photolithographic method then the photo resistive material is etched producing the pillars.

Resolutions comparison

(Sébastien Procureur)

(for $\pi @ 0.6 \text{ GeV/c}$, $\theta = 90^{\circ}$)

	4 x 2MM	4 x 2SI	2 x 2SI + 3 x 2MM	Specs.
σ _{pT} /p _T (%)	2.9	2.1	1.6	5
σ_{θ} (mrad)	1.3	15.1	1.4	10
σ_{φ} (mrad)	10.9	2.9	2.6	5
σ _z (μm)	212	1522	267	tbd.

 \rightarrow The mixed solution benefits of advantages from both SI and MM! \rightarrow The « Si only » solution is never the best...

- Drawings to show difficulties and help to find solutions
- Mechanical structure, electronics integration

- Full characterization of a bulk cylindrical detector under different gas mixtures, with different radii.
- Magnetic environment to deal with : 5 T orthogonal to the detector !

 $\tan\theta = v \times B / E$

Standard conditions : E= 1 kV/cm, v= 8 cm/µsec

 θ = 75 °

Adapted conditions: E= 10 kV/cm, v= 5 cm/µsec

θ = 14°

01/09/2008

0¹¹150

400 450

 ⊟

J.Ball - PSD8 Glasgow -

Channel

Argon gas - Vmesh = 450V - pitch = 600 μ m - gaps = (2.0mm;100 μ m) - π @ 1 GeV & 90°

But we need to check:

 how realistic GARFIELD simulation is
can we reach a satisfactory voltage setup with a thin cylindrical Micromegas detector.

01/09/2008

J.Ball - PSD8 Glasgow -

Experimental setup

Magnet refurbishing: Fall 2007

Tests started: February 2008

Magnetic field: 0 to 1.5 T

Laser: UV 355nm + neutral filters <50µJ/pulse, 2ns pulse, very good beam size and divergence

Detector: MM prototype V3

Bulk MM detector equipped with Gassiplex Board (96 channels)

Active area 30x30 mm², pitch 300 µm 2.25mm Drift-Mesh, 128µm Mesh-Strips Gas: 5% iC4H10 + 95% Ar

01/09/2008

Lorentz angle behaviour with the magnetic field

•Lorentz angle mesured from the deviation of the B=0T peak

•Drift distance: 2.25mm

•The signal spreads out with the Lorentz deviation \rightarrow increase the resolution

01/09/2008

Lorentz angle behaviour with the magnetic field (2)

Lorentz Angle [deg] vs. B [Tesla] Lorentz Angle [deg] 35 5% iC4H10, drift: 5.25mm, 25/06 30 Ī Garfield simulation 25 Ŧ 20 Ŧ 15 ę 10 ľ 5 I 00 0.2 0.6 0.8 1.2 1.6 0.4 1.4 1 1.8 B [Tesla]

19

« Spatial resolution »

- Sigma of the average position calculated event by event
- $\sigma_{exp}^2 = (\sigma_{laser+}^2 \sigma_{det}^2)/N$
- When the magnetic field increases → the resolution increases
- Test the detector homogeneity

	B0(T)	B0.5 (T)	B1 (T)	B1.5 (T)
exp	$5.53~\mu m$	$6.84~\mu m$	$8.46~\mu m$	10.04 μm

lrfu

œ

saclay One type of Bulk:

Active area; 115 mm for 288 strips, 500 mm long Material: 100 µm PCB, 5 µm Cu, 18µm mesh, 20µm Mylar

<u>Two type of structure, X and Y, for Bulk integration:</u>

Cylindrical for Y: ϕ ext: 220 mm Tile for X: ϕ int 180 mm

One support for up to 3 X tiles and 3 Y cylinders:

Channels: 1728 read by AFTER ASIC (T2K) Active area: 0.34 m²

Y cylinder

Dead zone between detectors not optimized on the prototype !!!

Cylindrical Prototype

Cylindrical prototype

Length: 600 mm **Diameter:** 180 / 220 mm

01/09/2008

J.Ball - PSD8 Glasgow -

Bulk MM traker project schedule

SPhN: J.Ball, M. El Yakoubi, P. Konczykowski, S. Procureur, F. Sabatié

SEDI: S. Aune, M. Combet, C. Lahonde-Hamdoun, O. Meunier

I. Giomataris

October – December 2008 :

- High magnetic field tests at JLab (DVCS magnet: 4.7 T)

- Tests and validation of X and Y tiles

1st semester 2009 :

- Prototype test with beam at Jlab
- Front End electronics Definition and Design studies

→ Decision about Central Tracker in 2009...

Additional slides

Material thickness budget:

<i>Units:</i> 10 ⁻⁴ x L _R	Minimum	Maximum	Weighted average
Drift : 100 µm Mylar foil	3.5	3.5	3.5
PCB : 50µm Kapton	1.7	1.7	1.7
Cu strips : 5µm (88% filling)	0	3.5	3.1
Mesh :15µm Fe (20% filling)	0	8.5	1.7
95% Ar 5% Isobutane 3mm	0.27	0.27	0.27
Drift spacers 3mm (0.8%)	0	100 (?)	0.8 (?)
Mesh spacers 200µm (1%) 01/09/2008		7 (?) Pure Si 300	µm0 ₽3(2) x 10⁻⁴ L _R
TOTAL	9	-	11.4

Forward Tracker

Considered options :

- Silicium
- Micromegas

30

Drift Electrode integration

 \rightarrow Drift plane set on silicon pillars, gas leak proof

 \rightarrow pillar spacing ? Sag < 0.1 mm from simul.

01/09/2008

Central Tracker

Two options considered : SVT, Hybrid Bulk MM + SVT

SVT : a barrel silicon tracker (BST) and a forward silicon tracker (FST). The BST has four regions with eight, twelve, eighteen, and twenty-four sectors respectively,

The FST has three regions, FR1–FR3, each consisting of fifteen sectors,

Simulation of FVT with Garfield

saclaIn the FVT configuration, the space resolution is better, if the pitch is small enough

→ Systematics studies with different pitches, gas mixtures, resistive film, etc...

Resistive film will give a smaller "effective" pitch but a larger Time resolution, unlikely wrt background.

if resistive film possible (low transverse diffusion)(Ar+CF₄); $\Rightarrow \sigma = 20 \ \mu m$

 \Rightarrow if not, $\sigma = 80 \ \mu m$ increase transverse diffusion (Ne+C₂H₆) 33

Spatial resolution

- Sigma of the average position calculated event by event
- $\sigma^2 = (\sigma^2(laser) + \sigma^2(x))/N$
- When the magnetic field increases → the resolution increases
- Test the detector homogeneity

	B0(T)	B0.5 (T)	B1 (T)	B1.5 (T)
exp	$13.9 \ \mu m$		$26.5 \ \mu m$	$53.7~\mu m$
sim	$22 \ \mu m$	$38 \ \mu m$	$102 \ \mu m$	

TAB. 1 – Spatial resolution at different magnetic fields

Status of the central tracking

saclay → Effect of (uncorrelated) background on the number of reconstructed tracks (assuming a time window of 100 ns)

lrfu

œ

J.Ball - PSD8 Glasgow -

J.Ball - PSD8 Glasgow -