

Progress on the Aberystwyth Electron Counting Array

Prof D.A. Evans, Dr. D.P.Langstafft, Mr. O.R. Roberts, Dr. Xi Zhu

Centre for Advanced Functional Materials and Devices Aberystwyth University & Bangor University, Wales, UK.

Overview

- Technology Overview
- Long Array Development
- Control Electronics Development
- Application to Diamond Contact Formation

Detector Technology Overview

- Readout Device for Microchannel Plate
- Custom ASIC
 - Linear Array of Collection Anodes
 - Amplifier Discriminators
 - 16-bit Counters & Readout Circuitry
 - Ceramic Substrate & MCP Holder
- 'Bed-of-Nails' mounting & Feedthrough
- Floating Control Electronics (ex vacuum)

Long Array Development

- Current array
 - 768 anodes
 - 19.2mm x 3mm
- New Array
 - New Electron Analyser (SPECS PhoiBOS 100)
 - 1536 anodes
 - 38.4mm x 5mm

Long Array Technology Challenges

- Yield
 - Not an issue (Current device yields at 90%)
- Reticle Size
 - Standard 20mm x 20mm reticle
 - Need 'stitched' design (Left + Right)
 - No active devices across stitch boundaries
 - Tighter Design Rules over stitch boundary

Long Array Stitching

Long Array Stitching

Long Array Stitching

Wafer with 40mm detector chips

40mm detector20mm detectorTest structures

Control Electronics Development

- ≈ 2kV across MCP ⇒ Floating readout system
 - TCP/IP over fibre optic (10 Base F)
 - Data Acquisition
 - Gate Timing
- Existing system
 - Based on ipEngine (Brightstar Engineering)
 - Programmed in C
 - ≈ 1.5 ms/frame (768 pixels @ 2us/pixel)
- In development:
 - Based on National Instruments cRIO
 - Labview programmable
 - ≈ 0.75 ms/frame (1us/pixel)
 - Easily re-programmed for special applications

Control Electronics Development

Detector Applications

- In-situ study of surface processes:
 - Contact Formation
 - Thin Film Growth
- In situ XPS/PES
- Heated stage (up to 1400 °C)
- K-cells + shutter
- CLAM4 Analyser (Lab & SRS)

Contact Formation on Diamond

- Important for Diamond based devices
- Not predictable
 - Ohmic Contact
 - Shottky Diode
 - Graphitisation
- Depends on
 - Metal
 - Substrate Doping
 - Surface Termination
 - Temperature
 - Etc, etc

Contact Formation on Diamond

- Study by Real Time PES/XPS Lab-based (300W MgKα)
- Single crystal, B doped, p-type <100> CVD
- Deposit Al with k-cell
- Anneal
- Monitor peak intensity & position for C1s
- D. A. Evans, O. R. Roberts, A. R. Vearey-Roberts, et al., Applied Physics Letters 91, 132114 (2007).

C1s core peak during growth

C1s core peak during anneal

Real-time monitoring of organic thin film growth

Real-time monitoring of organic thin film growth

- Thin film morphology
- Interface Energetics
- Interface chemistry

• Fast – high throughput

CAFMaD

Into the Future

- Eliminate Multiple Triggering
 - Charge Cloud Spreading
 - Degrades Spectrum
 - Voting Circuit
 - Post-doc
 - See poster
- Commercialisation

- 2 Dimensions
 - Spatial + Energy
 - Angle + Energy
 - Depth + Energy
 - High Flux / Short Pulse
 Applications
 - ➔ Spread electrons over
 - larger area

Acknowledgements

- Aberystwyth University
 - Prof. Keith Birkinshaw
 - Prof. Andy Evans
 - Adam Bushell, Owain Roberts, Alex Veary-Roberts
- SRS Daresbury

– Vin Dhanak, Rich Farrow, John Headspith

• DTi, EPSRC, KEF, CAFMaD, SRIF