First Generation of Deep N-well CMOS MAPS with In-Pixel Sparsification for the **ILC Vertex Detector**

<u>G. Traversia,</u>, A. Bulgheroni^{b,c}, M. Caccia^{b,c}, M. Jastrzab^{b,c},

M. Manghisoni^{a,b}, E. Pozzati^{b,d}, L. Ratti^{b,d}, V. Re^{a,b}

^aUniversità degli Studi di Bergamo

^bINFN

dell'Insubria

^cUniversità degli Studi ^dUniversità degli Studi di Pavia

8th International Conference on Position Sensitive Detectors

University of Glasgow, Glasgow, Scotland, September 1-5 2008

CMOS Monolithic Active Pixel Sensors

 \rightarrow sequential readout

standard MAPS design!

MAPS for vertex detectors in HEP experiments

- Tracking and vertexing systems in future high luminosity colliders (ILC, SLHC, Super B-Factory) will operate at high rate with low material budget to optimize position and momentum resolution
- Data sparsification could be an important asset at future particle physics experiments where detectors will have to manage a large data flow
- ➤ Modern VLSI CMOS processes (130 nm and below) could be exploited to increase the functionality in the elementary cell → sparsified readout of the pixel matrix
- The challenge is to implement a MAPS-based, rad-hard detector with similar functionalities as in hybrid pixels (sparsification, time stamping)

Triple-well CMOS processes

- Classical optimum signal processing chain for capacitive detector can be implemented at pixel level
- The collecting electrode (DNW) can be exploited to obtain higher single pixel collected charge
- ➤ A charge preamplifier is used for Q-V conversion → gain decoupled from electrode capacitance
- ▷ DNW may house NMOS transistors and using a large detector area, PMOS devices may be included in the front-end design → charge collection efficiency depends on the ratio between the DNW area and the area of all the N-wells (deep and standard)

Design specifications for the ILC vertex detector

- The beam structure of ILC will feature 2820 crossings in a 1 ms bunch train, with a DC of 0.5%. Assuming:
- > maximum hit occupancy 0.03 part./Xing/mm²
- > 3 pixels fire for every particle hitting \rightarrow hit rate \approx 250 hits/train/mm²
- digital readout adopted: 5um resolution requires
 17.3 um pixel pitch
- > 15 um pixel pitch $\rightarrow O_c \approx 0.056$ hits/train \rightarrow the probability of a pixel being hit at least twice in a bunch train period ≈ 0.0016 \rightarrow there is no need to include a pipeline for storing more than one hit per pixel (more than 99% of events recorded without ambiguity)
- > MAPS sensor operation is tailored on the structure of ILC beam
 - > Detection phase (corresponding to the bunch train interval)
 - Readout phase (corresponding to the intertrain interval)
- \succ Data readout in the intertrain interval \rightarrow system EMI insensitive
- Sparsified readout based on the token passing scheme. This architecture was first implemented in the VIP1 chip (3-D MIT LL technology) by the ILC pixel design group at Fermilab

SDRO prototype elementary cell

SDRO prototype elementary cell

SDRO prototype elementary cell

SDR0 prototype elementary cell

Digital readout scheme

Readout phase:

- token is sent
- > token scans the matrix and
- gets caught by the first hit pixel
- the pixel points to the X and Y registers at the periphery and
- sends off the time stamp register content
- data are serialized and token scans ahead

The number of elements may be increased without changing the pixel logic (just larger X- and Yregisters and serializer will be required)

Prototype chip layout

130 nm CMOS HCMOS9GP by STMicroelectronics: epitaxial, triple-well process (available through CMP, Circuits Multi-Projets)

M1 - a 16x16 matrix chiefly conceived for the test of the digital sparsified readout

M3 - a 3x3 matrix with all the outputs of the charge preamplifier accessible at the same time

M2 - an 8x8 matrix with digital sparsified readout and selectable analog output

Single pixel test structures -3 standalone readout channels with different C_D (detector simulating capacitance) with input pads for charge injection

SDRO chip and test board

SDRO experimental results

 Tests on the analog section with injection of external calibration signals and with an infrared laser scan (single channels, 3x3 pixel matrix)

ENC ≈ 60 e- rms (PA input device: I_D = 1 uA, W/L= 22/0.25)

> Threshold dispersion $\approx 60 e$ -

PSD 2008 - Glasgow, September 5 2008

11/16

3x3 matrix response to ⁵⁵Fe source

- > ⁵⁵Fe data confirm pixel gain calibration
- Cumulative spectrum relative to 8 of 9 pixels (M3)
- Charge sensitivity: 650mV/fC (mean value)

SDRO characterization with laser scan

- Focussed Laser on rear of sensor
- ➤ 1064nm wavelength
- > Step by 5um in X and Y
- Charge sharing among pixels
- > 3x3 matrix response
- Laser focussed on the central pixel
- Limited charge spreading

Digital readout test: pixel address

Digital readout test: time stamp

Z	Note	epad	++ - C	:\D	ocumer	nts an	d S	etti	ngs\	Uter	nte\[)eskt	op\s	ilim21	5.t	¢t			
File	Ma	difica	Cerca	V	/isualizza	Forma	ato	Lin	guago	gio (Confi	gurazi	one	Macro	Es	egui	Plugi	ins	?
-			li 🖷	C	8	ħ C	ì	Э.	C	黹	b 22		R			5	¶.	1	4
	alia	215+																	
	Sim	210.0	^{**} Dat	ta_	bit														
	592	2 0)	0	3	ynchi	0												
	593	800)	1	3	ynchi	0												
	594	1 0)	0	3	ynchi	0												
	595)	1	x	0													
	598)	1	x	1		X	=7										
	597			1	×	2													
	290		, 	9	×	о 0													
	600		_	1	¥	1													
	601		, ,	1	2	2		Y	=6										
	602			<u>_</u>	2	4 9													
	603			1	¥ +	=0													
	604		5	1	t	a1													
	605	; ;	5	0	t	s2		Т	s=2										
	606	5 0		0	t	s3													
	607	7 0	5	0	t	34													
	608	3 0) '	0	3	ynchi	0												
	609	0)	1	s	- ynchi	0												
	610)	0	s	ynchi	0												
	611	L C)	1	x	0													
	612	2 0)	0	х	1			/-1										
	613	3 ()	0	x	2		1	-1										
	614	1 C)	0	x	3													
	615	5 0)	1	Y	0													
	616	5 0)	1	У	1			/=7										
	617	7 0)	1	У	2													
	618	3 0)	0	У	3													
	619	9 0)	0	t	s0													
	620) ()	0	t	s1		-											
	621	L C)	0	t	з2		. '	s=u	,									
	622	2 0)	0	t	s 3													
	623	3 ()	0	t	34													
	624)	0	3	ynchi	0												
	625	0)	1	3	ynch:	0												
	626)	0	3	ynchi	0												
	627			0															
	628	5 (J	1			_	_	_	_	_	_	_		_	_	_	_	_
Norn	nal te	ext file	-																

2	No	tepa	d+	+ - C:	\Dc	cum	ents	and	d S	etti	ngs\	Uter	nte\l	Desk	top\	slim2	15.t	xt			
Fil	e N	lodific	a	Cerca	Vi	sualizz	a F	orma	to	Lin	guag	gio	Confi	guraz	ione	Macr	o Es	egui	Plug	ins	?
-	8		I.	1 🔫	0	k	Ľ,			2	C	品	b 9				-		I	IE	4
				1									-						,		
Ľ	sli	m215	.txt	Dat	а	bit															
	64	0	0		0		syn	chr	0												
	64	10	0		1		syn	chr	0												
	64	2	0	_	0		syn	chr	0												
	64	3	0		1		x0														
	64	4	0		1		x1		x	=3											
	64	5	0		0		x2														
	64	6	0	L	0		х3														
	64	17	0	ſ	1		УΟ														
	64	8	0		1		у1		v	=7											
	64	9	0		1		у2			1											
	65	0	0	L	0		γЗ														
	65	1	0	ſ	0		ts0														
	65	2	0		0		ts1														
	65	3	0		0		ts2		Т	S=()										
	65	4	0		0		ts3														
	65	5	0	L	0		ts4														
	65	6	0		0		syn	chr	0												
	65	7 🔿	0		1		syn	chr	0												
	65	8	0		0		syn	chr	0												
	65	9	0		0		x 0														
	66	50	0		0		x1			x =4											
	66	51	0		1		x2														
	66	52	0	ļ	0		хЗ														
	66	53	0		1		УΟ														
	66	54	0		1		¥1			Y=7	,										
	66	55	0		1		у2														
	66	56	0		0		¥З														
	66	57	0		1		ts0														
	66	58	0		0		ts1														
	66	59	0		0		ts2		1	rs=	14										
	67	0	0		1		ts3														
	67	1	0		0		ts4														
	67	2	0		0		syn	chr	0												
	67	'3 <mark>O</mark>	0		1		syn	chr	0												
1	67	4	0		0		syn	chr	0												

Conclusions and future plans

- DNW MAPS structures have been fabricated in a 130 nm, triple well CMOS technology and successfully characterized
 - For the first time we have MAPS with in-pixel data sparsification and time-stamping with 30us precision
- Several issues have to be addressed to meet ILC specifications (pixel pitch, detection efficiency)
 - > ILC VTX: if pixel pitch \approx 15um then binary readout is ok!
 - > Smart layout for standard N-wells is needed
- \succ Tests of SDRO structures with ⁹⁰Sr
- > Explore more advanced technological solutions: Vertical Integration (3D)
- Vertical integration between two layers of 130nm CMOS chips: the first layer may include a MAPS device with analog readout and the second layer the digital readout circuits
- Design of a second prototype in a MPW run using Tezzaron/Chartered process is scheduled