

Laser and Beta source characterization of **3D-DDTC detectors fabricated at FBK**

Andrea Zoboli^a, Gian-Franco Dalla Betta^a, Maurizio Boscardin^b, Luciano Bosisio^c, Simon Eckert^d, Susanne Kühn^d, Claudio Piemonte^b, Ulrich Parzefall^d, Sabina Ronchin^b, Nicola Zorzi^b ^a University of Trento e INFN sez. Trento - Italy, ^b FBK, Trento - Italy, ^c University of Trieste and INFN sez. Trieste - Italy, ^d Institute of Physics, University of Freiburg

Abstract - We report on the functional characterization of the first batch of 3D Double-Sided Double Type Column (3D-DDTC) detectors fabricated at FBK, Trento. This detector concept represents an evolution of our previous 3D-STC detectors, and is expected to achieve performance comparable to standard 3D detectors, but with a simpler fabrication process. Measurements were performed on detectors in the microstrip configuration coupled to the ATLAS ABCD3T binary readout. Spatially resolved signal efficiency tests made with a pulsed infrared laser setup and charge collection efficiency tests made with a Beta source setup are here reported.

Double-Side Double-Type Column 3D detectors - Process

Technology simplification of DDTC with respect to full 3D:

 Columns etched from both sides and not penetrating the entire substrate

 Columns are not filled with Polysilicon

No need for support wafer and wafer bonding technology

Chemical polishing avoided

Microstrip detectors features

Substrate thickness Junction column depth	300 190	μm μm	guard ring bias ring
Back column depth	170	μm	
Lateral depletion	0.5	V	
Full depletion	3	V	
Back plane capacitance	20	fF/col	

Scan made from 0 to 1V confirms that the lateral

from CV measurements.

depletion value is in agreement with results obtained

and fast readout.

Noise Scan

1300

1200-

1100

1000

900-

800

Noise [electrons]

DDTC exhibits higher noise respect to STC due to a higher back capacitance. Detectors work properly up to 40V.

Efficiency at 1 fC

System setup: 2.4MBq Sr⁹⁰ β source.

Charge Collection Efficiency

Events triggered by two scintillators in coincidence. ATLAS fast binary readout system as for the laser setup.

8th International Conference on Position Sensitive Detectors, 1st - 5th September 2008, Glasgow (Scotland)