Doubly resonant WW+jet signatures at the LHC

Tsedenbaljir Enkhbat, NTU

VIII Rencontres du Vietnam, Quy Nhon, Vietnam, December 16-22, 2012

Based on: J. Alwall, Ts. E, W-S. Hou & H. Yokoya, PRD86 (2012) 074029, Ts. E, W-S. Hou & H. Yokoya, PRD84 (2011) 094013

Outline

- Introduction
- WW+jet signal
- Analysis method W-tagging CL_s method
- Numerical results
- Conclusions

Introduction

Colored objects searched at the LHC

Diquarks, leptoquarks, excited quarks, squarks & gluino, colorons, axigluons, KK quarks & gluons, colored version of TC and other composite objects

CMS-PAS-EXO-12-016, [CMS collaboration] (2012)

- Most studies concentrate on individual resonances (Exception: SUSY & models with multiple resonances).
- ♦ Beyond SM theories usually predict not one but several resonances.
- \diamond Heavier ones often cascade decay to lighter ones.

Purpose of the Talk

Report a study of the LHC prospect for color-octet SU(2)-singlet vector resonance accompanied by lighter color-octet SU(2)triplet (pseudo)scalar.

R.S. Chivukula et al hep-ph/9503202.

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

SU(2) singlet color-octet vector: ω_8

SU(2) triplet color-octet (pseudo)scalar: π_8

 $M_{\omega_8} > M_{\pi_8} + M_W$

Appears in dynamical EWSB models: composite models colored version of technicolor, extra generation bound states

Constraint on color-octet from CMS Dijet search with 4fb^-1

CMS-PAS-EXO-12-016, [CMS collaboration] (2012)

 \diamond Dijet channel always present due to unitarity. Here $A^{\sim}0.6$. \diamond For $\alpha_{\rm s}$ coupling, the coloron is excluded up to 3.28 TeV.

Relevant terms for octet vector & scalar (V & S)

$$\mathcal{L}_{\omega_{8}-\text{decay}} = \xi \frac{g_{s}}{\sqrt{2}} \bar{q}_{i} \gamma_{\mu} (T^{a})_{ij} q_{j} V_{a}^{\mu} + \frac{g_{W}}{\sqrt{m_{S}m_{V}}} \left[f_{v} \epsilon^{\mu\nu\rho\sigma} \left(\partial_{\sigma} S_{a}^{\pm} \partial_{\rho} W_{\mu}^{\mp} + \partial_{\sigma} S_{a}^{0} \partial_{\rho} Z_{\mu} \right) V_{a\nu} + S_{a}^{\pm} \left(f_{a_{1}} m_{S} m_{V} V_{a}^{\mu} + f_{a_{2}} \partial^{\mu} V_{a\nu} \partial^{\nu} + f_{a_{3}} V_{a\nu} \partial^{\mu} \partial^{\nu} \right) W_{\mu}^{\mp} + S_{a}^{0} \left(f_{a_{1}} m_{S} m_{V} V_{a}^{\mu} + f_{a_{2}} \partial^{\mu} V_{a\nu} \partial^{\nu} + f_{a_{3}} V_{a\nu} \partial^{\mu} \partial^{\nu} \right) Z_{\mu} \right]$$

$$\hat{\sigma}_{q\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{s}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{8}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{\hat{s}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow \omega_{8} (\hat{s}) = \frac{32\pi^{3} \alpha_{8}^{2}}{9m_{\omega_{8}}^{2}} \xi^{2} \delta \left(1 - \frac{m_{\omega_{8}}^{2}}{9m_{\omega_{8}^{2}} \right)_{0.8}$$

$$\hat{\sigma}_{g\bar{q}} \rightarrow 0$$

$$\hat{\sigma}_{g\bar{q}}$$

CMS-PAS-EXO-12-016, [CMS collaboration] (2012)

Relevant terms for octet vector & scalar (V & S)

CMS-PAS-EXO-12-016, [CMS collaboration] (2012)

CMS-PAS-EXO-12-016, [CMS collaboration] (2012)

Situation when $\pi_8 o Wg$ is dominant

4 $q \bar{q}
ightarrow \pi_8 \quad \pi_8
ightarrow q \bar{q}, \ t \bar{t}$ are negligible.

 π_8 is the color counter part of the Goldstones in dynamical models. Top quark often need additional mechanism.

 $\star m_{\pi_8} \gtrsim 600 \,\, {
m GeV}$ where the pair production is inefficient.

The lighter case has been studied for pair production in TC context.

 \diamond The direct single production is suppressed.

 \diamond The doubly resonant signal can be used to access both ω_8 and π_8 .

 This is the main point of the work : We show it is possible that both resonances are probed by the single process. Collider signatures: Charged mode

$$B(\omega_8 \to \pi_8^{\pm} W^{\mp}) \simeq 2/3$$

$$\omega_8 \to \pi_8^{\pm} W_{(\text{soft})}^{\mp} \to W_{(\text{hard})}^{\pm} W_{(\text{soft})}^{\mp} g$$

- ♦ Hadronic: both "hard" and "soft" W decay hadronically. Difficult to distinguish from multijet QCD background.
- ♦ Dileptonic: both W's decay leptonically.
 Branching ratio ~ only 5%,
 hard to reconstruct the final states.
- ♦ Semileptonic: More promising. Two cases: Hard leptonic W with hadronic soft W Hard W-tagged jet with leptonic soft W

Assumption

Neutral mode $B(\omega_8 \to \pi_8^0 Z) \simeq 1/3 \leftarrow \omega_8 \to \pi_8^0 Z_{(\text{soft})} \to Z_{(\text{hard})} Z_{(\text{soft})} g$

- ♦ Hard leptonic: highly collimated leptons-> only muon ch. useful $Z_{(hard)}Z_{(soft)}g \rightarrow (\ell^+\ell^-)_{(hard)}(jj)_{(soft)}j$
- $\Leftrightarrow \text{ Hard hadronic: collimated dijet-> hard W-tag method can be used} Z_{(\text{hard})} Z_{(\text{soft})} g \to (jj)_{(\text{hard})} (\ell^+ \ell^-)_{(\text{soft})} j$

L.

2.

Find jets by the C/A algorithm with R = 0.8; keep the clustering history and momenta of clusters to be merged at each step.

 \diamond Pruning: Rerun the clustering: at each step, check if the two clusters a and b satisfy the following:

 $z_{ab} \equiv \frac{\min(p_T^a, p_T^b)}{p_T^J} < z_{\rm cut} \qquad z_{\rm cut} = 0.1$

 $\Delta R_{ab} > D_{cut} \equiv \alpha \cdot \frac{M_J}{p_T^J} \qquad \alpha = 1$ if yes, the softer one is discarded. Here $\Delta R_{ab} = \sqrt{\Delta \eta_{ab}^2 + \Delta \phi_{ab}^2}$ \diamond Mass drop tagging: Require the pruned jet mass to satisfy 60 GeV < $M_{\rm jet}$ < 100 GeV. The jet is tagged as a W candidate if there exists a mass drop

 $M_1/M_{\rm iet} < 0.4$

 M_1 is the mass of the hardest jet in the last step of the pruning.

Simulations

Hard W-tagged jet with soft leptonic W

Most promising channel:

 $\omega_8 \to \pi_8^{\pm} W_{(\text{leptonic}:\mu,e)}^{\mp}$

$$\pi_8^{\pm} \to W_{(hadronic)}^{\pm} + jet$$

Backgrounds

Main SM backgrounds: W + jets and semileptonic $t\overline{t}$. Irreducible background: $W^{\pm} + W/Z + \text{jets}$ only few %.

Event selection cuts

- ♦ Exactly one isolated lepton (e or μ) with p_{\perp} > 20 GeV.
- \diamond Missing $E_T > 20 \text{ GeV}$.
- \diamond A W-tagged jet j_W with $p_{\perp} > 200$ GeV.
- \diamond A jet j_1 with $p_\perp > 200$ GeV.
- ♦ Invariant mass (reconstructed π_8 mass) $M(j_W, j_1) > 500$ GeV.

π_8 resonance mass in the hard *W*-tagged channel

♦ Here $\xi = 0.2$ case is shown. Assumed $B(\omega_8 - > \pi_8 W) = 100\%$. ♦ Energy scale uncertainties of W and gluon jets -> Relatively large width

- \diamond Leptonic W reconstruction needed for ω_8 mass reconstruction.
- \diamond If multiple solutions, the missing \mathbf{E}_{T} with lowest p_{z} is chosen.
- \diamond if necessary adjust the magnitude of the missing \mathbf{E}_{T} to bring the W mass back to the nominal value.

The CL_s method

 \diamond We have used for our exclusion and 5sig. discovery potential calc.

Developed by LEP experiment & Standard method at the LHC. Used for the exclusion limits at the LHC.

Define:

$$CL_s \equiv P_{s+b}(Q \le Q_{obs})/P_b(Q \le Q_{obs})$$

P -probability of the chosen statistics Q less than the observed value. Q -chosen to be the likelihood ratio which can be expressed as:

$$Q = e^{-s_{tot}} + \prod_{i=1}^{N_{chan}} \left(1 + \frac{s_i}{b_i}\right)^{n_i}$$

 N_{chan} -total # of bin, s_{tot} -total signal rate n_i -# of observed event in i-th bin $s_i \ b_i$ -signal & background rate in i-th bin

Given confidence level CL is reached when $CL \geq 1 - CL_s$

Used Roostat package

- ♦ Cross section exclusion limits in pb in the (ω_8, π_8) mass plane in the hard *W*-tagged jet channel.
- \diamond The exclusion regions for ω_8 with ξ set to 0.1 and 0.2 are indicated.
- \diamond Uncertainty=Statistic(MC+Event #) + ~20% syst. from background est.

The exclusion reach from hard W-jet channel

♦ The reconstructed π₈ bump is used as resolution is higher.
 ♦ For ω₈ and π₈ mass difference close to M_w, the LHC will be able to exclude ω₈ production at 95% CL up to m_{ω8}=2100 GeV (1350 GeV)
 for ξ = 0.2 (0.1) with 20fb⁻¹ integrated luminosity for the 8 TeV LHC data.

The discovery reach

For the same mass splitting ω_8 and π_8 , an ω_8 5 σ discovery reach is possible for masses up to $m_{\omega 8}$ =1400 GeV (900 GeV) for $\xi = 0.2 (0.1)$.

$$\omega_8 \to \pi_8^{\pm} W_{(\text{hadronic})}^{\mp}$$
 followed by $\pi_8^{\pm} \to W_{(\text{leptonic}:\mu\,e)}^{\pm} + \text{jet}$

- \diamond Unlike hard-W case, lacks energetic W-jet.
- ♦ Requires 2 jets from ₩->significant reduction of the main backgrounds.
- \diamond Backgrounds are the same as the previous

Event selection cuts

- ♦ Exactly one isolated lepton (*e* or μ) with $p_{\perp} > 50$ GeV.
- \diamond Missing $E_T > 50$ GeV.
- ♦ A reconstructed $W_{\text{(leptonic)}}$ with p_{\perp} > 200 GeV.
- \diamond A jet j_1 with $p_\perp > 200$ GeV.
- ♦ Invariant mass (reconstructed π_8 mass) $M(W_{lep}, j_1) > 500 \text{ GeV}$.
- \diamond A hadronic W reconstructed from two non-leading jets with

 $p_{\perp} > 20 \text{ GeV}$ & inv. mass between 50 and 110 GeV.

♦ Here $\xi = 0.2$ case is shown. Assumed B($\omega_8 \rightarrow \pi_8 W$)=100%. ♦ The invariant mass width is larger than hard W-jet case

♦ The energy of the hadronic *W* is rescaled to get the correct *W* mass, keeping η , ϕ and p_⊥ fixed.

- ♦ Cross section exclusion limits in pb in the $(ω_8, π_8)$ mass plane in the hard leptonic *W* channel.
- ♦ The exclusion regions for ω_8 with ξ set to 0.1 and 0.2 are indicated.

The exclusion reach from hard leptonic W channel

For ω_8 and π_8 mass difference close to M_W , the LHC will be able to exclude ω_8 production at 95% CL up to $m_{\omega 8}$ =1800 GeV (1300 GeV) for $\xi = 0.2$ (0.1) with 20fb⁻¹ integrated luminosity for the 8 TeV LHC data.

The discovery reach

For the same mass splitting ω_8 and π_8 , an ω_8 5 σ discovery reach is possible for masses up to $m_{\omega 8}$ =1300 GeV for $\xi = 0.2$. For $\xi = 0.1$ no discovery is possible in the studied range. Soft leptonic Z with hard Z jet

 $\omega_8 \rightarrow \pi_8^0 Z_{(\text{leptonic:}\mu\,e)}$ followed by $\pi_8^0 \rightarrow Z_{(\text{hadronic})} + \text{jet}$ \diamond Promising: leptonic Z constructioncase lacks energetic W-jet $\diamond t\bar{t}$ is negligible if 2-lep inv. mass required to be close to Z mass. \diamond However: 3X smaller BR to leptons, 2X smaller total BR, worse cut efficiency.

Event selection cuts

- ♦ Exactly two isolated leptons of same flavor with opposite sign $(e \text{ or } \mu)$ with $p_{\perp} > 20 \text{ GeV}$ and $|M(1^{+}1^{-}) M_{Z}| < 15 \text{ GeV}$.
- ♦ Missing $E_T < 50$ GeV.
- \diamond A *W*-tagged $j_{\rm Z}$ with $p_{\perp} > 200$ GeV.
- \diamond A jet j_1 with $p_\perp > 200$ GeV.
- ♦ Invariant mass (reconstructed π_8 mass) $M(j_Z, j_1) > 500$ GeV.

Conclusions

- Study of the LHC prospects for color-octet SU(2)-singlet vector accompanied by color-octet SU(2)-triplet (pseudo)scalar using jet tools is presented.
- ♦ Demonstrated both resonances ω_8 and π_8 can be searched upto $m_{\omega 8}$ =1400 GeV (900 GeV) and exclude $m_{\omega 8}$ =2100 GeV (1350 GeV) for $\xi = 0.2$ (0.1) for 20fb⁻¹ integrated luminosity for the 8 TeV LHC data.
- ♦ The signal being doubly resonant is crucial for substantially reducing the main background.
- ♦ The most efficient channel is soft leptonic W and hard Wjet
- ♦ If π₈ is not accessible in direct production, due to its weak couplings to light generations, with sizable $ω_8 → π_8 W$, the doubly resonant signal opens possibility to both signal in a single stroke.