Overview of Higgs Results from ATLAS

Wahid Bhimji

University of Edinburgh On behalf of the ATLAS collaboration

> Rencontres du Vietnam Quy Nhon, Vietnam

17th December 2012

Outline

Motivation

Standard Model

ATLAS

- Detector
- Search Channels

3 Analyses and Latest Results

- $H \rightarrow b\overline{b}$
- $H \rightarrow \tau \tau$
- $H \rightarrow WW$
- $H \rightarrow \gamma \gamma$
- $H \rightarrow ZZ^* \rightarrow 4I$

Combination

Outline

- Highly predictive theory.
- Survived experimental tests to exceptional precision.

- Highly predictive theory.
- Survived experimental tests to exceptional precision.
- BUT not all clear:
 - Massive W/Z vector bosons.
 - So electroweak symmetry is broken while satisfying relativity and gauge-invariance.
 - Mechanism from Brout & Englert, Higgs, Guralnik, Hagen & Kibble.

- Highly predictive theory.
- Survived experimental tests to exceptional precision.
- BUT not all clear:
 - Massive W/Z vector bosons.
 - So electroweak symmetry is broken while satisfying relativity and gauge-invariance.
 - Mechanism from Brout & Englert, Higgs, Guralnik, Hagen & Kibble.
 - Implied existence of another particle: the Higgs boson.

- Highly predictive theory.
- Survived experimental tests to exceptional precision.
- BUT not all clear:
 - Massive W/Z vector bosons.
 - So electroweak symmetry is broken while satisfying relativity and gauge-invariance.
 - Mechanism from Brout & Englert, Higgs, Guralnik, Hagen & Kibble.
 - Implied existence of another particle: the Higgs boson.

Mass not predicted. For nearly 40 years it proved elusive.

Outline

ATLAS Detector

Muon spectrometer

 3 superconducting magnets for toriodal field with tracking chambers

Inner tacking detector:

- Silicon pixels and strips (SCT)
- Straw-tube transistion radiation tracker (TRT)
- 2T superconducting solenoid

Calorimeter:

- EM: Liquid Argon (LAr) in barrel and endcap
- Hadronic: iron scintillator / tile calorimeter for central, LAr for end cap
- Forward LAr calorimeter for both EM and hadronic.

Precise lepton, photon measurements. Jets, E_T^{miss} over full $|\eta| < 4.9$

Data

- Proton-Proton run ends today!
- Heavy-lon run then long shutdown (LS1)
- So this is all we get for a while:
 - 23.2 fb $^{-1}$ delivered in 2012
 - \bullet > 90% recording efficiency
- Most of these analyses with "HCP" dataset: 4.7-4.9 fb⁻¹ $\sqrt{s} = 7$ TeV, 2011 + 13.0 fb⁻¹ $\sqrt{s} = 8$ TeV, 2012

Outline

- Gluon fusion
- Vector Boson Fusion
- Associated production with W or Z : Higgs-strahlung
- Associated production with tt used for gamma gamma and bb

- Gluon fusion
- Vector Boson Fusion
- Associated production with W or Z : Higgs-strahlung
- Associated production with tt used for gamma gamma and bb
- Associated Higgs-Bhimji production (small x-sec)

Higgs Decay Channels Explored

High-sensitivity channels, first observations:

- γγ: Excellent mass resolution
- ZZ^(*)(→ IIII): Cleanest background seperation
- WW^(*)(→ lνlν): Sensitive but poorer mass resolution

Lower-sensitivity channels, important for fermion couplings:

- *bb*: Only associated production
- $\tau\tau$: Leptonic and Hadronic decay

Summary of Analyses Presented Here

Higgs Decay	Channels	<i>L</i> (fb ⁻¹) (2011 + 2012)	Conference Note
$H ightarrow b\overline{b}$	$ \begin{array}{c} ZH \rightarrow \nu \overline{\nu}H \\ WH \rightarrow I\nu H + \\ ZH \rightarrow IIH \end{array} $	4.7 + 13.0	ATLAS-CONF-2012-161
	ttH	4.7	ATLAS-CONF-2012-135
$H \rightarrow \tau^+ \tau^-$	[⊤] lep [⊤] lep [⊤] lep [⊤] had [⊤] had [⊤] had	4.7 + 13.0	ATLAS-CONF-2012-160
$H \rightarrow WW^{(*)}$	ΙνΙν	13.0	ATLAS-CONF-2012-158
$H \rightarrow \gamma \gamma$	-	4.8 + 5.9	ATLAS-CONF-2012-091
NEW	-	4.8 + 13.0	ATLAS-CONF-2012-168
$H \rightarrow ZZ^{(*)}$	////	4.8 + 5.8	ATLAS-CONF-2012-092
NEW		4.6 + 13.0	ATLAS-CONF-2012-169

- July Combination Paper: Phys. Lett. B 716 (2012) 1-29
- Updated Combination for HCP: <u>ATLAS-CONF-2012-162</u>
- NEW Combination: <u>ATLAS-CONF-2012-170</u>

Higgsists! Combined ATLAS Higgs results Jul '12

Higgsists! Combined ATLAS Higgs results Jul '12

Higgsists! Combined ATLAS Higgs results Jul '12

95% CL Limit on μ **ATLAS** 2011 - 2012 $+ 1\sigma$ $+ 2\sigma$ √s = 7 TeV: ∫Ldt = 4.6-4.8 fb⁻¹ $\sqrt{s} = 8 \text{ TeV}$: Ldt = 5.8-5.9 fb⁻¹ Observed ----- Bkg. Expected CL₂ Limits 10⁻¹ 110 150 200 300 400 500 m_u [GeV]

 μ = Signal Strength = Ratio of measured yield to SM expectation

Today's focus:

Low mass

- Results since July *ττ*, *bb* channels
- Updates measuring properties: mass, spin.

Statistical procedures link

Outline

$H ightarrow b\overline{b}$

- Associated production with W or Z to reduce backgrounds.
- Catagorised by number of (charged) leptons (*N_l*, *l* = *e*, μ):
 - Two (IIbb), one (I ν bb) or zero ($\nu\nu$ bb)
 - Common lepton selection
- Further categorised by regions in $p_{T_{W/Z}}$ or E_T^{miss} :
 - 0-lepton: *E_T^{miss}* [120-160] [160-200] [>200] GeV x (2 or 3 jets)
 - 1, 2-lepton: *p*_{*T*_{*W/Z}} [0-50][50-100][100-150][150-200] [>200] GeV*</sub></sub>
- Require 2 jets to be b-tagged (70% efficiency).
- Mass resolution improved by adding the energy from muons within the jet to the total jet energy.
- Experimental systematic uncertainties mainly b-tagging and jet energy (see backup slides for full table).

$H \rightarrow bb$ backgrounds: Inclusive mass distributions

Events / 10 GeV

Data/MC

600F

500

400

50

ATLAS Preliminary

L dt=13.0 fb⁻¹. \s = 8 TeV

Leptons, 2 Tags, >=2 Jets

100

150

- Dominant: Z+jets W +jets, Top. ۲
- Background shapes from MC, ٠ normalisation from data control regions: Relax b-tagging (W/Z + jets) or *nJet* or m_{\parallel} and E_{τ}^{miss} (top).
- Diboson from MC, Multijet from data ۲
- Signal $m_H = 125 \text{ GeV}$

Wahid Bhimii (University of Edinburgh)

250 m_{b5} [GeV]

Data 2012

Multijet Dibosor

Z+c

$H \rightarrow b\overline{b}$ Results

Background subtracted distribution

 Clear (4.0σ) di-boson signal extracted as a cross-check:

•
$$\mu_{(W/Z)Z} = 1.09 \pm 0.20 \pm 0.22$$

$H \rightarrow b\overline{b}$ Results

Background subtracted distribution

 Clear (4.0σ) di-boson signal extracted as a cross-check:

•
$$\mu_{(W/Z)Z} = 1.09 \pm 0.20 \pm 0.22$$

For $m_H = 125$ GeV:

Observed limit 1.8 x SM

• μ (Combined) = $-0.4 \pm 0.7 \pm 0.8$ μ (\sqrt{s} =7 TeV) = $-2.7 \pm 1.1 \pm 1.1$

 $\mu~(\sqrt{s}\text{=8 TeV}) = 1.0 \pm 0.9 \pm 1.1$

$H \rightarrow b\overline{b}$ Results

Background subtracted distribution

- Clear (4.0σ) di-boson signal extracted as a cross-check:
- $\mu_{(W/Z)Z} = 1.09 \pm 0.20 \pm 0.22$

For $m_H = 125$ GeV:

Observed limit 1.8 x SM

• μ (Combined) = $-0.4 \pm 0.7 \pm 0.8$ μ (\sqrt{s} =7 TeV) = $-2.7 \pm 1.1 \pm 1.1$

 μ (\sqrt{s} =8 TeV) = 1.0 \pm 0.9 \pm 1.1

• $ttH \rightarrow bb$ limit at m_H =125 GeV of 13.1 (10.5 expected) with 2011 data

Outline

$H \rightarrow \tau \tau$

Separate analyses for three different decay modes:

• lep-lep ; lep-had ; had-had: 2, 1 or 0 charged leptons (e, μ)

Further split into categories, applied in sequence:

- 2-Jet VBF (lep-lep only); "Boosted" ($p_{T_{iet}} > 30 \text{ GeV}, p_{T_H} > 100 \text{ GeV}$)
- 2-Jet VH (lep-lep only); 1-jet; 0-jet

Main background: $Z \rightarrow \tau \tau$ "Embed" TAUOLA MC τ s for μ s in data $Z \rightarrow \mu \mu$. Main systematics: Embedding, Tau and Jet Energy Scales.

Missing Mass Calculator (MMC): Fit decay orientations to τ kinematics: 13-20% $m_{\tau\tau}$ resolution

$H \rightarrow \tau \tau$: Results

 $m_H = 125 \text{ GeV}$ (all chan combined):

- Limit = 1.9 x SM (obs) (1.2 (exp))
- $\mu = 0.7 \pm 0.7$

$H \rightarrow \tau \tau$: Results

 $m_H = 125 \text{ GeV}$ (all chan combined):

- Limit = 1.9 x SM (obs) (1.2 (exp))
- $\mu = 0.7 \pm 0.7$

(VBF + VH) vs (ggF) production signal-strength best-fit:

•
$$\mu_{VBF+VH} = -0.4, \, \mu_{ggF} = 2.4$$

Outline

$H \rightarrow WW^*$

- July Results: 2.8σ signal (2.3σ exp.)
- Updated (13 fb⁻¹) 2012 result: focus on $e\nu\mu\nu$ channel only:
 - Provides 85% of sensitivity
 - E_T^{miss} resolution degraded with 2012 pileup.
 - Same-flavour channels suffer from Drell-Yan bgs $Z\gamma^*
 ightarrow ee, \mu\mu$
- Analysis predominantly sensitive to gluon-gluon fusion production
- H + 0-jet and H + 1-jet channels
 - < 2 jets reduces top background

$H \rightarrow WW^*$ Backgrounds and Results

- *W*+jets fully estimated from data.
- WZ and ZZ from simulation.
- Cross checked together in same-charge data "validation region"
- Dominant WW and Top backgrounds normalised in control regions.
- WW modelling improved by change from MC@NLO to Powheg+Pythia8.

Wahid Bhimji (University of Edinburgh)

$H \rightarrow WW^*$ Results

For $m_H = 125$ GeV:

- Signal significance of 2.6σ (expected 1.9)
- $\mu = 1.5 \pm 0.6$

$H \rightarrow WW^*$ Results

For $m_H = 125 \text{ GeV}$:

- Signal significance of 2.6σ (expected 1.9)
- $\mu = 1.5 \pm 0.6$
- Poor-resolution in mass but result consistent with July results from high-res γγ and ZZ^{*} → 4*I*.

Outline

$H \rightarrow \gamma \gamma$

July Paper analysis:

- Ten exclusive categories according to resolution, selected in:
 - (2-Jet) VBF
 - Converted / unconverted photons
 - η_{γ}
 - p_{T_t} (Component of diphoton pT orthogonal to the thrust axis)

New 13 fb⁻¹ 2012 analysis (added to unchanged 2011 analysis):

- Apply two additional categories for coupling measurement:
- Enriched in W/Z associated production:
 - "One-lepton": Leptonic W/Z decay, at least one e, mu in event
 - "Low-mass 2-jet": Consistent with hadronic W/Z decay
- Improved photon isolation and multi-variate primary-vertex finding.
- Performed mass measurement and spin analysis

$H \rightarrow \gamma \gamma$ Background Fit

- Backgrounds Include:
 - SM diphoton (≈74%);
 - γ + jet (22%);
 - jet + jet (3%);
 - Drell Yan (1%)
- $m_{\gamma\gamma}$ fit to data.
- Signal: Crystal Ball + Gauss.
- Background model per category chosen using MC from:
 - Fourth-order Bernstein poly
 - Exponential of 2nd-order poly
 - Exponential function.
- Only functions with low signal yield in a bkg-only MC fit are used.
- Bkg parameters from data fit.

At $m_H =$ 126.5 GeV: $N_{sig} =$ 249 $\sigma_{CB} =$ 1.64 GeV

Events / 2 GeV

vents-Fit

$H \rightarrow \gamma \gamma$ New Results: Mass and Signal Strength

68% (solid) and 95% (dashed) CL

- Local Significance: 6.1σ = Single Channel Discovery
- Mass Measurement: $126.6 \pm 0.3(stat.) \pm 0.7(sys.)$ GeV
- $\mu = 1.8 \pm 0.3(stat.)^{+0.21}_{-0.15}(sys.)^{+0.20}_{-0.14}(theory)$
 - Theory uncertainty is that on Higgs production cross-section: such as QCD scale and Higgs decay BR

$H \rightarrow \gamma \gamma$ New Results: Couplings and Spin

Best-fit values of signal strength for ggF+ttH, VBF and VH processes

- $\mu_{ggF+ttH} x B / B_{SM} = 1.8 \pm 0.4 \pm 0.2 \pm 0.2$
- $\mu_{VBF} x B / B_{SM} = 2.0 \pm 1.2 \pm 0.6 \pm 0.3$
- $\mu_{VH} x B / B_{SM} = 1.9 \pm 2.5 \pm 0.6 \pm 0.4$
- Angular analysis without categorisation, signal region [123.8,128.6] GeV
 - 0⁺ SM Higgs favoured over <u>JHU</u> gluon-fusion produced, spin-2.

Outline

$H \rightarrow ZZ^* \rightarrow 4I$

- Four sub-channels
 - 4e, 2e2 μ , 2 μ 2e and 4 μ

Backgrounds:

- ZZ*: determined from simulation
- Z + jets and *t*t normalised from control regions

$H \rightarrow ZZ^* \rightarrow 4I$

- Four sub-channels
 - 4e, 2e2 μ , 2 μ 2e and 4 μ

Backgrounds:

- ZZ*: determined from simulation
- Z + jets and *t*t normalised from control regions
- New 4.6 fb⁻¹ + 13 fb⁻¹ analysis
 - Mass measurement

$H \rightarrow ZZ^* \rightarrow 4I$

- Four sub-channels
 - 4e, 2e2μ, 2μ2e and 4μ

Backgrounds:

- ZZ*: determined from simulation
- Z + jets and *t*t normalised from control regions
- New 4.6 fb⁻¹ + 13 fb⁻¹ analysis
 - Mass measurement
 - Spin / Parity: 2 approaches:
 - Boosted Decision Tree
 - Matrix Element Approach ("J^P-MELA")
 - *J*^P = 0⁺, 0⁻, 2⁺, 2⁻ compared pairwise in 2 m_{4l} regions.

$H \rightarrow ZZ^* \rightarrow 4/$ New Results: Spin Analysis

$H \rightarrow ZZ^* \rightarrow 4/$ New Results: Signal and Mass

- Local Significance: 4.1 σ ,
- $\mu = 1.3^{+0.5}_{-0.4}$ for best mass fit

$H \rightarrow ZZ^* \rightarrow 4/$ New Results: Signal and Mass

- Local Significance: 4.1 σ ,
- $\mu = 1.3^{+0.5}_{-0.4}$ for best mass fit
- Mass Measurement: $M_{4l} = 123.5 \pm 0.9(stat) \pm 0.3(syst)$ GeV

Outline

17th December 2012 33 / 36

$H \rightarrow \gamma \gamma$, ZZ^{*} mass measurement consistency

- Mass difference: 3.0^{+1.1}_{-1.0} GeV
- Corresponds to $2.3 2.7\sigma$

- Mass systematics thoroughly investigated (see backup)
- γγ mainly from γ energy scale: Total: ±0.7 GeV (stat. = ±0.3 GeV)
- ZZ^{*} → 4/ dominated by 4 µ chan: Total: ±0.3 GeV (stat. = ±0.9 GeV)

 $m_H = 125.2 \pm 0.3(stat) \pm 0.6(sys)$ GeV

34/36

Latest Combination: Signal Strength

- $\mu = 1.35 \pm 0.24$ at 125 GeV
- Compatibility test to SM expectations: probability around 13%

Conclusions

- Last July ATLAS discovered a new particle that's now old news.
- In November, $\tau\tau$, $b\overline{b}$ and WW^* channels updated.
- Last week new $\gamma\gamma$ and ZZ* \rightarrow 4/ results.
- Consistent with a SM Higgs but some things are "muddying the water".
- LHC (proton-proton) run ended today with almost 10 fb⁻¹ more data
- Will it be enough to make things clear?

Backup Slides

Proved elusive... May 2012 Precision EW fit

MSSM Higgs

- Two-doublet Higgs sector: Neutrals: 2 CP-even: h, H, 1 CP-odd: A, 2 Charged H+, H-
- Couplings defined by m_A or m_{H^+} and $\tan \beta = v_u / v_d$ (ratio of VEV).
- ATLAS searches: Neutral $\rightarrow \tau \tau, \mu \mu$ Charged $\rightarrow \tau \nu, cs$.
- No evidence found for MSSM Higgs.

$H \rightarrow \gamma \gamma$ July Results

- Observed exclusion: 112-123 GeV and 132-143 GeV
- Maximum deviation at 126.5 GeV with a local significance of 4.5 σ
- For $m_H = 126$ GeV: $\mu = 1.8 \pm 0.5$

$H \rightarrow ZZ^* \rightarrow 4/$ July Results

- Excess 3.6σ at 125 GeV
- At $m_H = 125$: $\mu = 1.6 \pm 0.6$

$H \rightarrow \gamma \gamma$, ZZ* mass details

- $ZZ^{(*)} \rightarrow 4I$ result dominated by 4μ :
 - High-stats J/Ψ, Υ and Z decays
 (> 20 M J/Ψs)
 - Inner and Muon detector independent measurements.
 - Overall muon momentum scale uncertainty ±0.2%
 - Each $H \rightarrow \mu\mu$ candidate examined: impact < 0.1 GeV

For electrons:

- E-scale from $Z \rightarrow ee$: 0.4%
- $E_{T_e} < 15 \text{ GeV from } J/\Psi \rightarrow ee$
- QED radiation modelling; Background contamination.

 $\gamma\gamma$ conservative systematics include:

- Energy scale: Extracted from high-stats *Z* → *ee* sample.
- Lateral leakage
- Different layer/ gain-range calibration biases.
- Material upstream of calorimeter.
- Non-linearities in electronics
- Pile-up
- Vertex angle measurement
- Conversion fraction in categories;
- Signal resolution uncertainty;
- Background modelling.

- Assume single, narrow resonance and zero-width approximation: σ.BR(ii → H → ff) = σ_{ii}Γ_{ff}/Γ_H
- Allow only modifications to absolute values of couplings: Tensor / CP-even scalar Higgs
- Scale-factors κ_i modify SM σ_{ii}, Γ_{ii}
- Constrain κ_i to probe couplings

Couplings (based on July Results)

- Assume single, narrow resonance and zero-width approximation: σ.BR(ii → H → ff) = σ_{ii}Γ_{ff}/Γ_H
- Allow only modifications to absolute values of couplings: Tensor / CP-even scalar Higgs
- Scale-factors κ_i modify SM σ_{ii}, Γ_{ii}
- Constrain κ_i to probe couplings
- E.g. 1: Fermion and Vector Coupling:
 - Assume only SM particles in loops and *H* decay.
 - Fermion $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$ and Vector $\kappa_V = \kappa_W = \kappa_Z$

- Compatible with SM.
- Also true without assumptions on total width.

Couplings (based on July Results)

- Assume single, narrow resonance and zero-width approximation: σ.BR(ii → H → ff) = σ_{ii}Γ_{ff}/Γ_H
- Allow only modifications to absolute values of couplings: Tensor / CP-even scalar Higgs
- Scale-factors κ_i modify SM σ_{ii}, Γ_{ii}
- Constrain κ_i to probe couplings
- E.g 2: Non-SM particles in loops:
 - κ_g and κ_γ for new contributions to gg → H and H → γγ loops;

•
$$\kappa_g = 1.1^{+0.2}_{-0.3} \kappa_\gamma = 1.2^{+0.3}_{-0.2}$$

No sizeable new contributions.

$\gamma\gamma$ pile-up dependence

- Dependence of the mass-resolution on the number of interactions per bunch-crossing.
- Primary vertex determined by calorimeter pointing in periods with different pile-up conditions.

Uncertainty [%]	0 lepton	1 lepton	2 leptons					
b-tagging	6.5	6.0	6.9					
c-tagging	7.3	6.4	3.6					
light tagging	2.1	2.2	2.8	Uncertainty [%]	0 lepton		1 lepton	2 leptons
Jet/Pile-up/ E_{T}^{miss}	20	7.0	5.4		ZH	WH	WH	ZH
Lepton	0.0	2.1	1.8	b-tagging	8.9	9.0	8.8	8.6
Top modelling	2.7	4.1	0.5	Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	19	25	6.7	4.2
W modelling	1.8	5.4	0.0	Lepton	0.0	0.0	2.1	1.8
Z modelling	2.8	0.1	4.7	$H \rightarrow bb \text{ BR}$	3.3	3.3	3.3	3.3
Dihoson	0.8	03	0.5	$VH p_T$ -dependence	5.3	8.1	7.6	5.0
Multiet	0.0	2.6	0.5	VH theory PDF	3.5	3.5	3.5	3.5
Multijet	0.0	2.0	0.0	VH theory scale	1.6	0.4	0.4	1.6
Luminosity	3.6	3.6	3.6	Statistical	4.9	18	4.1	2.6
Statistical	8.3	3.6	6.6	Luminosity	3.6	3.6	3.6	3.6
Total	25	15	14	Total	24	34	16	13

Background Systematics

Signal Systematics