Rencontres du Vietnam

Higgs Boson Searches at the Tevatron

Huong Nguyen on behalf of CDF and DØ University of Virginia BSM, December 2012, Quynhon - Vietnam

Outline

- Introduction
 - The Tevatron, CDF and DØ detectors
 - Search strategies at the Tevatron
- Standard Model Higgs boson searches
- Constraint on Higgs boson couplings
- Beyond Standard Model Higgs boson interpretations

• Summary

The SM Higgs Boson: Constraints and Evidences

Indirect constraints from EW measurements:

M_H < 152 GeV @95% CL

Direct searches at LEP:

M_H > 114.4 GeV @95% CL

Direct searches at LHC:

Observation of a new particle with

M_μ ~ 125 GeV & properties consistent

with the SM Higgs Boson

Direct searches at Tevatron:

Evidence for a new particle decayed into bb with compatible mass to that of the new particle at LHC 3

The Tevatron

The most recent results at the Tevatron discussed today rely on the full RunII data set Proton-antiproton collider at Js=1.96 TeV

- Tevatron accelerator: 6.5 km circumference
- Two general-purpose experiments: CDF and DØ
- Run II (2002-2011) Ended 30 september 2011
 - ~12 fb⁻¹ delivered per experiment
 - ~10 fb⁻¹ for physics analysis

CDF and DØ Detectors

Multipurpose Detectors

 Central tracking system embedded in a 	· Muon chambers
solenoidal magnetic field:	Combined with Multilevel Triggers
- Silicon vertex detector	system to select events of interest
- Tracking chamber (CDF), Fiber tracker(DØ)	· Data taking efficiency: ~ 90%
• Calorimeters: EM and Hadronic sections	Recorded ~10 fb ⁻¹ for Run II

SM Higgs Boson at the Tevatron

SM Higgs production X-sections at Tevatron

 $(\sigma \approx 0.2 - 1.0 \ pb) \ (\sigma \approx 0.01 - 0.3 \ pb) \ (\sigma \approx 0.01 - 0.1 \ pb)$

Decay modes depends on the SM Higgs boson mass

- High mass (m_H > 135 GeV) dominated by H→WW
- Low mass (m_H < 135 GeV) dominated by H → bb

Leading Contribution to Production Rate

Backgrounds to Higgs

Most Challenge of SM Higgs Searches Physics backgrounds are estimated by simulation and calibrated to data when possible Tevatron Run II pp at $\sqrt{s} = 1.96$ TeV April 2011 - D0 Bun II W+jets, W+Y CDF Run II • W+jet bkg to semi-hadronic signatures 10⁴ Theory Jet or gamma faking lepton Z +jets, Z+Y Cross Section (pb) Mismeasured jets or leptons yielding E/_T • Jet or gamma faking a 3rd lepton Di-boson WW, WZ, ZZ • Can yield 1, 2, 3 or 4 real leptons 10 • WW, VZ: irreducible bkgs for $H \rightarrow WW$, VH ~5 orders Double or single Top of magnitude W, b quark from Top decays 10⁻¹ z $W_{\gamma} Z_{\gamma} WW t\bar{t} WZ$ w t QCD Multijet backgrounds are measured directly = 165 GeV from data: Physics process Jet faking leptons Mismeasured jets creating E_{T}

•

Search Strategy

We're not getting any more data! Improving signal sensitivity by:

- Explore as many final states as possible
- Maximize acceptance when possible
 - Use different lepton reconstruction categories
 - Lower kinematic requirements
 - Inclusive triggers
- Split analyses into sub-channels
 - Different background composition
 - Different signal production mode
 - More handles to control systematic uncertainties
- Use Multivariate techniques (decision trees , neural networks, matrix element)
 - Maximize the use of available kinematics information
 - Train MVA for specific background to remove/reduce it
 - Best discrimination for measurement

Searching for $VH \rightarrow Vb\overline{b}$

Major Contribution to sensitivity for $m_{\mu} < 135$ GeV

Identify events consistent with leptonic W/Z decays in association with jets

Heavy Flavor Identification

Enhance H→bb by requiring jets to be "b-tagged"

Both CDF and DØ use multivariate b-tag classifiers to improve discrimination power

- 50 80% efficiency to tag b-jet
- 0.5 10% chance to tag light jet

⇒ This alone brought 15 - 30% improvement in H→bb analysis

Dijet Mass with b-taging

B-tagging brings significant improvement to S:B

Multivariate analysis in VH \rightarrow Vbb search

MVA training against specific background

DØ WH→lvbb

Split channel into

tt enriched/depleted regions

Suppress Multijets backgrounds

MVA Optimization in VH \rightarrow Vbb search

MVA training against specific background and for the signal

Tevatron H \rightarrow **bb Result**

95% CL upper limits on SM Higgs production at the Tevatron Significant excess in $120 < M_{H} < 135$ GeV

Quantifying the Excess

Test compatibility with background-only hypothesis

- Local p-value for $H \rightarrow bb$: 3.3 s.d
- Global p-value for $H \rightarrow bb$: 3.1 s.d

Searching for H \rightarrow WW

Final States Driven by $H \rightarrow WW$

- Di-lepton of opposite signs + Ε_τ
 Clean signal, Small Br~6% (ee +eµ + µµ)
- Lepton+ tau+ E₁

Small Br~4% (et+ mt) Difficulty to reconstruct hadronic taus

Lepton + ∉₊ + jets

Larger Br ~ 30% (e+jets, μ+jets) Large W+jets background, hard to model

Searching for $H \rightarrow WW \rightarrow IvIv$

The most sensitive channel for $130 < m_{\mu} < 200$

- Still one of the most important channels at 125GeV
- But poor mass information due to neutrinos
- Clean signatures
 - 2 isolated high p_{T} leptons, opposite signs
 - Large missing $\mathbf{E}_{\mathbf{T}}$
- Spin correlation in H →WW
 - Spin 0 nature of the Higgs boson
 - Parity violation in W decays
 - \Rightarrow The leptons tend to be collinear

Searching for $H \rightarrow WW \rightarrow IvIv$

Maximize sensitivity:

- Consider all signal production modes gg→H W/Z H VBF
- Sub-channels optimized for different background compositions:
 - by jet multiplicity
 - by lepton flavor (DØ) or quality (CDF)
 - by WW-likeness (DØ)
- Use MVA techniques
 - Suppress Z/gamma background by cutting on dedicated multivariate discriminant (DØ)
 - Suppress top quark pairs by vetoing b-tag (CDF)
 - Define WW enriched / depleted regions (DØ)
 - · As a final discriminant to look for signal

Tevatron H \rightarrow **WW Result**

Expected sensitivity of ~2.1 x SM at M_{μ} = 125 GeV

Broad excess consistent with S+B hypothesis at M_{μ} = 125 GeV

Higgs Search Validation

Validate analyses by measuring SM diboson production

- Diboson VZ \rightarrow Vb \overline{b} and WW \rightarrow IvIv topologically similar to VH \rightarrow Vb \overline{b} and H \rightarrow WW \rightarrow IvIv Higgs signals
- Employ same final states and analysis strategy as in Higgs searches with different signal definitions

Cross check using WW→lvlv

Validate analyses by measuring SM diboson production

Measured cross-section σ_{mean} (WW) = 11.1 ± 0.5 (stat) +0.6(syst) In agreement with NNLO prediction

Results from CDF and DØ

Tevatron Combination

95% CL upper limits on SM Higgs production at the Tevatron

- Expected exclusion: $100 < M_{H} < 120$ GeV and $139 < M_{H} < 184$ GeV
- Observed exclusion: $100 < M_{H} < 103$ GeV and $147 < M_{H} < 180$ GeV
- Significant excess of data events with respect to the background

estimation in the mass range 115<M_H<140 GeV

Probing Higgs Boson Couplings

- Signal contributions from multiple production and decay processes simultaneously accepted by each channel
 - ⇒ Direct Interpretation for Higgs couplings is ambiguous
 - \Rightarrow Measure deviation of couplings from the SM prediction
 - Assumption
 - \Rightarrow Fix M_H = 125 GeV
 - \Rightarrow The Higgs couplings are varied by scaling with scale factors

Probing Higgs Boson Couplings

- Signal contributions from multiple production and decay processes simultaneously accepted by each channel
 - ⇒ Direct Interpretation for Higgs couplings is ambiguous
 - \Rightarrow Measure deviation of couplings from the SM prediction
 - Assumption
 - \Rightarrow Fix M_H = 125 GeV
 - ⇒ The Higgs couplings are varied by scaling with scale factors

Benchmark 1

- ⇒ Assume couplings to fermion as predicted by SM
- \Rightarrow Measure the ratio $\lambda_{wz} = k_w/k_z$

Measurements consistent with the SM prediction

Probing Higgs Boson Couplings

- Signal contributions from multiple production and decay processes simultaneously accepted by each channel
 - \Rightarrow Direct Interpretation for Higgs couplings is ambiguous
 - \Rightarrow Measure deviation of couplings from the SM prediction
 - Assumption
 - \Rightarrow Fix M_H = 125 GeV
 - \Rightarrow The Higgs couplings are varied by scaling with scale factors

BSM Interpretations: Fermiophobic Higgs

BSM Interpretations: 4th Generation Models

- 4th generation Models
 - Inclusion of a 4th generation of Fermion
 - ggH coupling is enhanced ~ 3 times

- Higgs production cross-sections
 - $gg \rightarrow H \rightarrow WW$ production is enhanced by
 - 7-9 times for 100 < $M_{\rm H}$ < 300 GeV
 - * VH & VBF remain the same at SM rate
 - Higgs decay branching ratios
- H→gg is significantly increased at low mass
 H→WW dominant mode for high mass
- Searched channels: gg→H→WW, gg→H→ZZ

Summary

- Updated Tevatron results based on full Run II data set in most search channels.
- The H->bb searches at the Tevatron continues to provide valuable information to help unravel the nature of the discovered boson.
- Excess in 115<mH<140 GeV region with local significance of 3.1 s.d at mH=125 GeV. So far emerging picture consistent with discovered boson at the LHC.

SM Higgs at the Tevatron

Higgs Search Validation

Validate analyses by measuring SM diboson production

- Diboson VZ \rightarrow Vb \overline{b} and WW \rightarrow IvIv topologically similar to VH \rightarrow Vb \overline{b} and H \rightarrow WW \rightarrow IvIv Higgs signals
- Employ same final states and analysis strategy as in Higgs searches with different signal definitions

Cross check using VZ→Vbb

Validate analyses by measuring SM diboson production

$H \rightarrow b\overline{b}$ Results from CDF and DØ

The SM Higgs Boson: Constraints and Evidences

Spin/Parity Measurement

- VH mass good discriminating variable between 0⁺, 0⁻, 2⁺ spin/parity hypotheses (Ellis et al., arxiv:1208.602)
- Planning to do in bb channels (may not be ready for HCP)

Spin/Parity Measurement

 Expect to (at least) be able to distinguish between 0⁺ and 2⁺ (assuming backgrounds behave)

Systematic Uncertainty

Example:

Systematic Uncertainty	Signal (%)	Background (%)
Single Tag		
Jet EC - Jet ER	1.0	2.5
Jet R&T	2.6	2.6
b Tagging	3.2	1.3
Trigger	2	1.9
Lepton Identification	1.1	0.8
Heavy Flavor Fractions	_	4.1
Cross Sections	6	9.8
Luminosity	6.1	5.8
Multijet Normalilzation	_	1.3
Total	9.8	12.3
Double Tag		
Jet EC - Jet ER	0.7	2.3
Jet R&T	3.5	2.6
b Tagging	5.8	3.6
Trigger	2	1.9
Lepton Identification	1.1	1.0
Heavy Flavor Fractions	0	8.0
Cross Sections	6	9.8
Luminosity	6.1	5.8
Multijet Normalilzation	—	1.1
Total	10.9	13.9

Systematic uncertainties can affect both shape and normalization of signal and background.

Historical View

Log-Likelihood Ratio

Log-likelihood gauges the relative agreement of the data with the background-only or signal+background models

- Throw pseudo-experiments to populate LLR distributions for background-only and signal+background models
- Compare to observed LLR

