

OVERVIEW OF HIGGS RESULTS FROM CMS

N. van Remortel

Universiteit Antwerpen, Belgium On behalf of the CMS Collaboration

VIIIth Rencontres du Vietnam, 16-22/12/2012

DISCLAIMER: Due to limited time

- Only Standard Model Scalar search is covered
- ❑ No specific details on each analysis concerning:
 - Object reconstruction and event selection
 - Background estimation
 - Systematics
 - Consistency checks (vs energy, run period, subchannels, ...)
- Assume you are familiar with statistical methods for limit setting & significance calculation, combination, ...
- For more detailed info on 9 updated (wrt. Summer 2012) results, see <u>http://cms.web.cern.ch/org/cms-papers-and-results</u> or talk to me during a coffee break ;-)
- □ This talk, arranged by decay:
 - **Bosonic decay channels (γγ, ZZ, WW)**
 - **Fermionic decays (***ττ*, bb)
 - Combined significances and limits
 - Properties (couplings, mass, quantum numbers)

CMS DETECTOR

LHC performance

2 muons

25 20

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

Time

2012.08.24 06:00:52 to 2012.08.24 14:00:13 GMT

Rougly 4.5 PU per nb⁻¹/s

Time

:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

0:52 to 2012.08.24 14:00:13 GMT

SM H Production & Decay

CMS Higgs program: From exclusion to discovery to measurements

July 4 th 2012: 10fb ⁻¹	CMS
95% exclusion	m _H ∉[110,122.5]&[127,600] GeV
Local p-value	5.0 σ + Nothing else significant
Mass [GeV]	125.3 ± 0.4 (stat.) ± 0.5 (syst.)
Signal Strength (γγ+ZZ+WW+ττ+bb)	0.87 ± 0.23

But is it THE Standard Model Higgs Boson ?

- Does it decay to fermions (τ, b) as expected in the SM ?
- Are all the couplings (γ, W, Z, t, b, gluons, ...) SM-like ?
- What are its quantum numbers (Spin and CP) ?
- What about individual production mechanism strength (gg, VBF, VH, ttH)

+7 fb⁻¹ extra data and analysis improvements

Overview of CMS SM Higgs analyses

99	

Higgs H decay pro mode mee	Higgs N	Mass	Data used		Maaa	
	production mechanism	range [GeV]	7 TeV [fb ⁻¹]	8 TeV [fb ⁻¹]	wass resolution	CMS comb
γγ	Untag (~gg) VBF-tag	<mark>110</mark> – 150 <mark>110</mark> – 150	5.1 5.1	5.3 5.3	1–2% 1–2%	>>
bb	VH-tag ttH-tag	<mark>110</mark> – 135 110 – 140	5.0 5.0	12.1 -	10% _	~ ~
ττ	1-jet (~gg) VBF-tag ZH-tag WH-tag	<mark>110 -</mark> 145 <mark>110 -</mark> 145 110 - 160 110 - 140	4.9 4.9 5.0 4.9	12.1 12.1 _	20% 20% _	>>>>
$ZZ \rightarrow 4I$ $ZZ \rightarrow 2I2\tau$ $ZZ \rightarrow 2I2\nu$ $ZZ \rightarrow IIjj$	Inclusive Inclusive Inclusive Inclusive	110 -1000 180 -1000 200 - 600 120 - 600	5.0 5.0 4.7 4.7	12.2 12.2 5.0 –	<mark>1–2%</mark> 10–15% – –	>>
WW → 2l2v WW → Iljj	0/1-jets (~gg) VBF-tag WH-tag Untag (~gg)	110 - 600 110 - 600 110 - 200 170 - 600	4.9 4.9 4.9 5.0	12.1 12.1 5.1 12.1	20% 20% _ _	~ ~ ~

$H \rightarrow \gamma \gamma$ (6 channels)

- Clean final state with 2 isolated photons
- Narrow mass peak on continuum
- Very precise ECAL energy calibration
- Need underlying event for vertexing
- Background shape extracted from data
- Fits in subcategories with distinct resolution and S/B improves total sensitivity
- Also includes VBF production channel

$H \rightarrow ZZ$ (11 channels)

Main features:

- High lepton reconstruction efficiencies for m_{4l}>100 GeV
- Standard reference candle: single-resonant $Z \rightarrow 4I$
- Irreducible backgrounds: direct ZZ or $Z\gamma^*$
- 2D discriminant exploiting production&decay kinematics Improvements:
- Inclusion of $2I2\tau$ final state w. leptonic and hadronic τ decays
- Improved lepton reconstruction & isolation efficiencies
- Measurement of spin&parity

Angular analysis in CMS $P_{backaround}(m_1, m_2, \theta_1, \theta_2, \Psi, \Phi_3)$

enhances analysis sensitivity

m₄₁ (GeV)

$H \rightarrow ZZ \rightarrow 2e2\mu$ candidate

10/22

$H \rightarrow ZZ$ high mass exclusion and low mass significance

Observed p-value in 4I+2I2 τ : 4.6 σ Signal strength @ 126 GeV : 0.78 +0.34 -0.27

SM Higgs-like excess at 126 GeV SM exclusion up to 129<m_H<700 GeV Reweight of high mass Higgs lineshape Including interference effects

 $m_{H} = 126.2 \pm 0.6 (stat.) \pm 0.2 (syst.) GeV$

$H \rightarrow ZZ \rightarrow 4I$ Spin&Parity measurement

$H \rightarrow WW \rightarrow 2I2v$ (6 channels)

Main features:

- 2 well isolated leptons (e or μ) with small opening angle due to helicity conservation, some feedthrough from leptonic τ's
- Large amount of missing E_T (neutrino's), no mass peak
- Separate treatment of same (SF) and different flavor (DF) leptons: DY background is absent for DF
- Analysis in bins of jet multiplicity (0,1,2OR3), includes VBF mode WW bg dominates in 0-jet, ttbar in higher jet multiplicities Improvements:
- Shape analysis in DF on 0&1 jet bins, cut&count elsewhere
- 2D shape (m_{ll},m_T) replaces BDT, $m_T = \sqrt{2p^{ll}_T ET^{miss}(1 cos\Delta\phi_{ETmiss\ ll})}$

Cut&count 0-jet DF (e,µ) final yields

$H \rightarrow WW \rightarrow 2I2v$ limits and signal strength

14/22

H→ττ (25 channels)

Search in ggH, VBF and VH production modes and five di- τ final states:

- MVA based object reconstruction and cut-based event selection
- **C** Separated in categories (τ decays, jet bins and τ p_t) to enhance S/B (0-jet bin only for background control, highest sensitivity from 1-jet bin and high τ p_t)
- **Revised Missing ET reconstruction using multivariate regression**
- **D** Maximum likelihood fit to reconstruct $m_{\tau\tau}$ for incompletely constrained τ decays: 12-20% resolution
- **Ο** Simultaneous binned likelihood fit to m_π

$H \rightarrow \tau \tau$ combined limits and signal strength

16/22

Reaching sensitivity to SM cross section

- Expected limit at m_H=125 GeV in absence of signal: 1.05xσ_{SM} Observed limit combining all sub-channels: 1.66xσ_{SM}
- Consistency among all channels and CM energies
- **Extracted signal strength compatible with SM:** $\sigma/\sigma_{SM} = 0.7 \pm 0.5$ @ 125 GeV

VH→bb (13 channels)

Main features:

- Careful pile-up subtraction from jets (10% m_{bb} resolution)
- B-tagging based in likelihood discriminant
- Huge background contribution (V+jets, tt, diboson, t, QCD)
- Backgrounds reduced by selecting highly boosted H (and V) with large opening angle
- BDT analysis, signal extracted from fit to output shapes Improvements:
 - · Improved b-jet energy measurement with multivariate regression
 - Dedicated optimization for high p_t(V) events

VH→bb summary

Combination

→ Largest local significance of 6.9 σ at m_H=125 GeV → Expected significance at m_H=125 GeV is 7.8 σ

- $\rightarrow \sigma/\sigma_{SM} = 0.88 \pm 0.21$
 - → Compatible with SM Higgs
 - → Compatibility within 1σ for each decay channel / production mode

Properties

- MASS: Combine information from the high resolution channels measurements:
 - H → ZZ
 - H $\rightarrow \gamma\gamma$ (ggH and VBF)
- Signal cross section for the channels left floating independently in the fit

Fermions versus vector bosons

 →8 partial decay widths transformed into coupling modifiers, κ_i (=1 for SM)
 → Fermiophobic scenario excluded at >4σ level

Properties

- Custodial symmetry: Couplings to W and Z boson should scale together: cornerstone of electroweak Symmetry Breaking
- Parametrerized as

All possible coupling modifiers and assymetry parameters Any deviation from 1 hints at non-SM behavior

* H $\rightarrow\gamma\gamma$: $\sqrt{s}=7$ TeV, L=5.1 fb⁻¹ $\sqrt{s}=8$ TeV, L=5.3 fb⁻¹

Conclusions

The analyses performed on the dataset delivered by the LHC till September 2012 strengthened the significance of the new bosonic state announced on July 4th.

- \rightarrow Over 4 σ in both H $\rightarrow \gamma\gamma$ and H \rightarrow ZZ
- \rightarrow 3.1 σ evidence in H \rightarrow WW \rightarrow 2I2 ν (@ 125 GeV)
- \rightarrow Mild excess in H \rightarrow $\tau\tau$ compatible with both SM Higgs and background
- \rightarrow 2.2 σ excess in H \rightarrow bb
- \rightarrow Total significance amounts to nearly 7 σ
- \Box CMS measured the mass to be 125.8 ± 0.4 (stat) ± 0.4 (sys) GeV
- **D** Best fit value for $\sigma/\sigma_{SM} = 0.88 \pm 0.21$
- **2.5 standard deviations disfavoring particle to be pseudo-scalar**
- □ The coupling structure has been confronted to the SM predictions.
 → Overall very good agreement observed but too early to draw any conclusions although most couplings are within 1_o of SM

□ More channels added/updated, more measurements for RC de Moriond 2013!