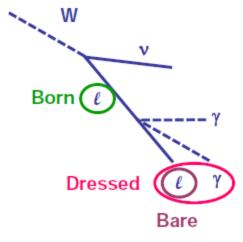
Outcome of the WG: W&Z precision measurements

Katharina Müller on behalf of the LHC W&Z precision measurement WG

Compact Muon Solenoid experiment at CERN's LHC


Proposal of how to achieve a better comparison

- Concentrate on comparisons between the three experiments, not on combination
- No extrapolation to the full phase space
- Each experiment defines the fiducial volume which is best suited
- Results are presented with full covariance matrices
- Agreed procedure of evaluation of theoretical uncertainties in acceptance correction
- Keep same fiducial volumes to allow direct comparison to 2010/2011
- Presentation of results
 - Born level: for comparison with NNLO calculations (DYNNLO, FEWZ)
 - Bare leptons (after FSR): muons: closer to the measured quantity
 - Dressed leptons: closer to the measured quantity, for comparisons with MC predictions

Dressed leptons include all FSR photons in cone $\Delta R=0.1$, partially corrects for FSR How to evaluate the uncertainties?

- So far experiments presented for
 - ATLAS: Born, bare and dressed leptons
 - CMS: bare and born leptons (PYTHIA)
 - LHCb: Born and bare (FSR calculated with PHOTOS)
- Every experiment provides correction factors in the fiducial volume of the measurements for (based on MC)
 - Born to bare leptons
 - Born to dressed leptons

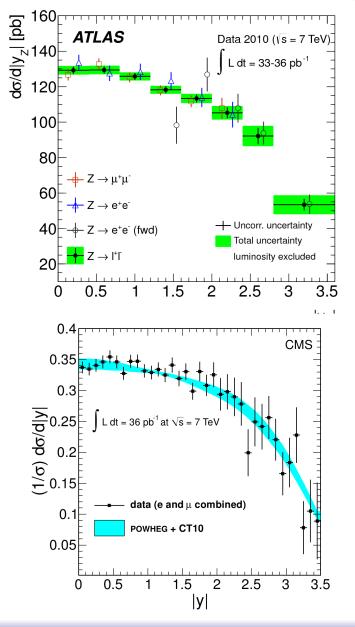
LHC electroweak WG 21. May, 2012

Roadmap for a comparison between the experiments

- Proposed plots for a comparison:
 - Lepton charge asymmetry vs η
 - W+ and W⁻ cross section vs η
 - Z cross section vs rapidity (ATLAS and CMS)
 - Not yet foreseen to compare Z pt distribution
- Each experiment extrapolates to the fiducial range of the other experiments
 - No extrapolation in pseudorapidity
 - By changing the appropriate cuts
 - Or determine correction factors with MC, taking into account theoretical uncertainties

		р _т [GeV/c]	M [GeV/c²] Z analysis	M ^T ,E _T ^{miss} W analysis
ATLAS	η <2.5	$20~(25~W \rightarrow e\nu)$	66-116	
CMS	η <2.5	25-30	60-120	
LHCb	2<η<4.5	>20,25,30	60-120	>40, >25

LHCb can measure for $p_{T} > 20$, 25, 30 GeV/c; allows to check the extrapolation in p_{T} 2011 comparison $p_{T} > 25$ GeV/c, 2012 not yet decided

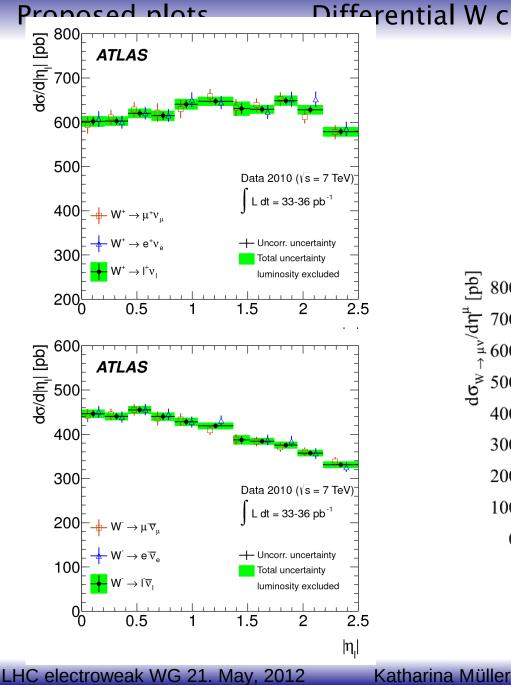

LHC electroweak WG 21. May, 2012

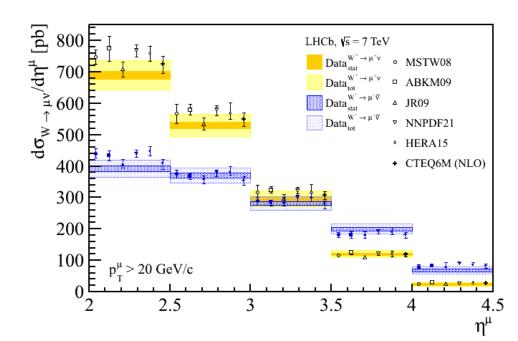
Roadmap for a comparison between the experiments

- Each experiment provides correction factors in fiducial range of the other experiments
 - Born to bare leptons
 - Bare to dressed leptons
 - Important cross check of determination of correction factors
- Each experiment is responsible for the overlay plots with their best measurement
- Questions:
 - are these the best plots for the comparison?
 - Lepton charge asymmetry vs $\boldsymbol{\eta}$
 - W+ and W⁻ cross section vs η
 - Z cross section vs rapidity
 - Is there interest in measurements with dressed photons?


Proposed plots

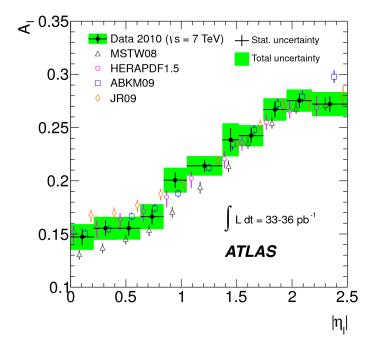
Z production

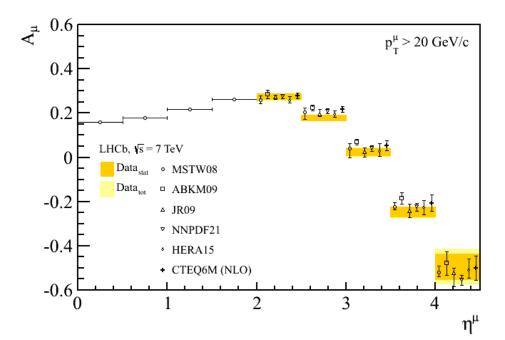



Comparison ATLAS/CMS with LHCb not yet defined

ATLAS/CMS: |(ηlepton)|<2.5 LHCb: 2< η < 4.5

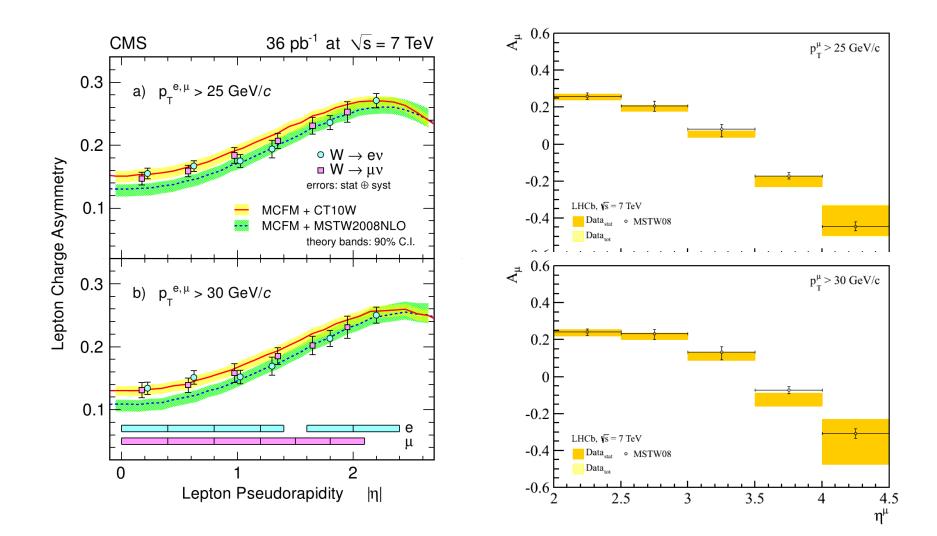
LHC electroweak WG 21. May, 2012




6

Differential W cross section

Lepton charge asymmetry



$$A_{\mu} = \frac{\sigma(W^+ \to \mu^+ \nu_{\mu}) - \sigma(W^- \to \mu^- \overline{\nu}_{\mu})}{\sigma(W^+ \to \mu^+ \nu_{\mu}) + \sigma(W^- \to \mu^- \overline{\nu}_{\mu})}$$

Proposed plots

Lepton charge asymmetry

LHC electroweak WG 21. May, 2012

Conclusion

Agreed on

- Method for the evaluation of theoretical uncertainties in acceptance correction
- Set of plots we want to show for comparison of the three experiment
- Extrapolation into fiducial volumes of ATLAS/CMS/LHCb
- No extrapolation in pseudorapidity foreseen
- Overlay plots in fiducial volume of each experiment