CMS tracker UK bump-bonding requirements

UK CMS community (Bristol, Brunel, Imperial, RAL)

hardware involvement in trigger and tracker

Mark Raymond, UK bump-bonding, May 2012.

HL-LHC tracker upgrade interests

pixel DAQ (not currently involved with detector module developments)

strip tracker front end electronics - bump-bonding is relevant here

present CMS LHC strip tracker

HL-LHC CMS tracker

front end module - more detail

2S-Pt module concept proposed for outer tracker layers

bring signals from 2 strip sensor layers together in one chip look for cluster correlations to identify high Pt stub

CBC(1) -> CBC2

CBC(1) prototype (2011)

130nm CMOS

128 channel wirebond

L1 triggered readout only

works very well

CBC2 - in production soon

L1 triggered readout and Pt stub information

254 channels: allows correlation between 127 strips on top and bottom sensors

250μm C4 bump-bonding

~ 800 pads

CBC(1)

128 channels wirebond: 50 um pitch 7mm x 4mm

CBC₂

254 channels C4 bump-bond: 250 um pitch 10.75mm x 4.75mm

CBC2

why bump-bonding?

no wire-bonding at chip periphery reduced space requirements

low inductance and resistance particularly useful for CBC2 powering (switched cap DC-DC converter)

want to use industry for large - scale production assembly

why 250 - not 200?

as conservative as possible

need high yield over large area

inputs
prev/next
chip
gnd
not allocated
(will be gnd)

UK bump-bond facility relevance to CBC

for large scale production - probably not

a big task - C4 chosen to facilitate commercial production of module sub-assemblies (still plenty of assembly, wire-bonding, testing,... to do in the institutes)

for prototyping and testing - maybe

some commercial prototyping necessary to prove feasibility

but once that achieved it might be more economic to bond further test pieces in-house

in any case we can probably provide C4 chips to try out if that is useful

chips available ~ late 2012

EXTRA

a few slides borrowed from Georges Blanchot's WIT presentation

Hybrid circuits and substrate technologies for the CMS tracker upgrade

G. Blanchot

Rigid substrates

- Build-up substrates are commonly used for chip packaging.
- •Core layer provides:
 - Power/Ground planes
 - Rigid core material.
 - Mid density routing and through hole vias.
- •Build-up layers are laminated on top and bottom of core:
 - Very high density interconnections on constrained areas.
 - Microvias to connect build up layers to core external layers.
 - No through hole vias...

The high density flip chip array imposes the need for high density interconnection substrates.

For example, sensor wirebonding: 25um traces required for straight connection to bond fingers.

Rows 1, 2, 3: top sensor, straight connection.

- Top sensor bond fingers can be in-line or staggered
- •In both cases, the wirebond pads are very close of the sensor edge.
- •Traces escape all in same direction without need of vias.
- •Traces can still go through 2 adjacent vias without turn arounds.
- Sensor bond fingers are present at same locations on the bottom side:
- •The connection is possible through the CBC pin escapes via array from the 3 last rows.
- •The 3 top rows are associated to the top side sensor.
- •Microvias, 50 µm drill, 100 µm capture pad are required.

Rigid and flexible substrate technologies are today available with these degree of interconnection densities.

Rows 4, 5, 6: bottom sensor, straight connection through pin escapes.

Flexible substrates

- Flexible polyimide is a quickly emerging technology.
- •Thin film flex technology made of spinned liquid polyimide on square panels.
 - Very high density layouts: Tracks w/s = 20 μ m, microvias = 30 μ m.
 - Silicon matching CTE = 3 ppm/K.
 - Very low mass: Cu thickness < 7 μm, film thickness ≈ 10 μm.
 - However: 4 layers maximum, no copper on base layer, limited power delivery capabilities.

Flexible substrates for the CMS tracker modules

CBC prototype summary

2.5 -> 1.25 DC-DC converter

features

- designed for short strips, ~2.5–5cm, < ~ 10 pF
- full size prototype 128 channels
 50 μm pitch wirebond
- binary un-sparsified readout
- powering test features

2.5 -> 1.2 DC-DC converter LDO regulator (1.2 -> 1.1) feeds analog FE

main functional blocks

- fast front end amplifier 20 nsec peaking
- comparator with programmable threshold trim
- 256 deep pipeline (6.4 us)
- 32 deep buffer for triggered events
- fast (SLVS) and slow (I2C) control interfaces

front end

- DC coupling to sensor up to 1 uA leakage
- can be used for both sensor polarities

for 5 pF input capacitance noise ~800e power ~300 μW / chan.

CBC2 architecture

blocks associated with Pt stub generation

channel mask: block noisy channels (but not from pipeline)
 cluster width discrimination: exclude wide clusters
 offset correction and correlation: correct for phi offset across module and correlate between layers
 stub shift register: test feature - shift out result of correlation operation at 40 MHz
 fast OR at comp. O/P and correlation O/P: - can select either to transmit off-chip
 for normal operation choose correlation O/P

neighbour chip signals - CWD O/Ps

need programmability of **offset** and **window** width for upper layer channels to correlate with hit in inner layer

window defines Pt cut
width programmable up to +/- 8 channels

offset defines lateral displacement of window across chip programmable up to +/- **3** channels

- => 11 signals to transmit to neighbouring chip 11 to receive from neighbouring chip
 - = 22 signals

adding comp O/Ps -> 30 signals altogether, top and bottom of chip