Recap: VINCIA

Plug-in to PYTHIA 8 C++ (~20,000 lines)

XΑ

Giele, Kosower, Skands, PRD **78** (2008) 014026, PRD **84** (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD **85** (2012) 014013 Lopez-Villarejo, Skands, JHEP **11** (2011) 150

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell \rightarrow 3 on-shell partons, with (E,p) constants

Evolution Scale

Infinite family of continuously deformable Q_E

E.g.: transverse momentum, invariant mass, energy

Hard $2 \rightarrow n$: "smooth ordering" & LO matching

Radiation functions

Laurent-series with arbitrary coefficients, anti

E.g.: Gehrmann-Gehrmann-Glover, ARIADNE, MIN,

+ Helicity-dependence & Massive fermions (c,b,t)

Kinematics maps

Formalism derived for infinitely deformable $\kappa_{3\rightarrow 2}$ Special cases: ARIADNE, Kosower, + massive generalizations

vincia.hepforge.org

 $|(y_R; z)|^2$

Changing Paradigm

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

Ask:

Is it possible to use the all-orders structure that the shower so nicely generates for us, as a substrate, a stratification, on top of which fixed-order amplitudes could be interpreted as corrections, which would be finite everywhere?

Changing Paradigm

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

Ask:

Is it possible to use the all-orders structure that the shower so nicely generates for us, as a substrate, a stratification, on top of which fixed-order amplitudes could be interpreted as corrections, which would be finite everywhere?

Problems:

- Traditional parton showers are history-dependent (non-Markovian)
- \rightarrow Number of generated terms grows like $2^{N}N!$
- + Highly complicated expansions

Solution: (MC)² : Monte-Carlo Markov Chain

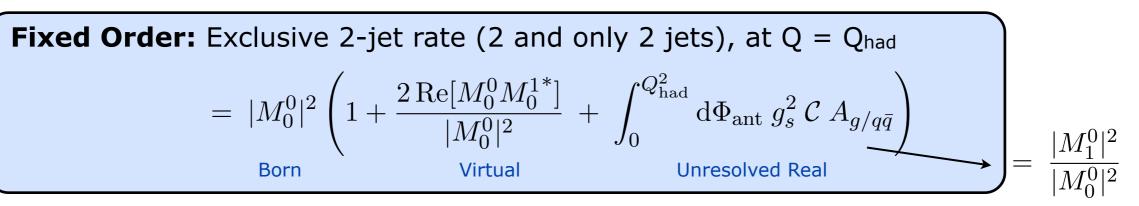
- Markovian Antenna Showers (VINCIA)
- \rightarrow Number of generated terms grows like N
- + extremely simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

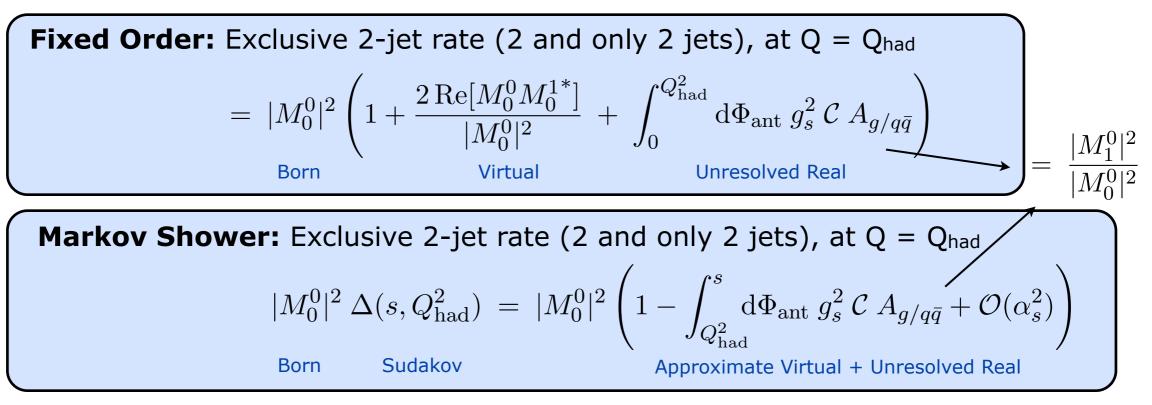
Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

Trivial Example (for notation): $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)



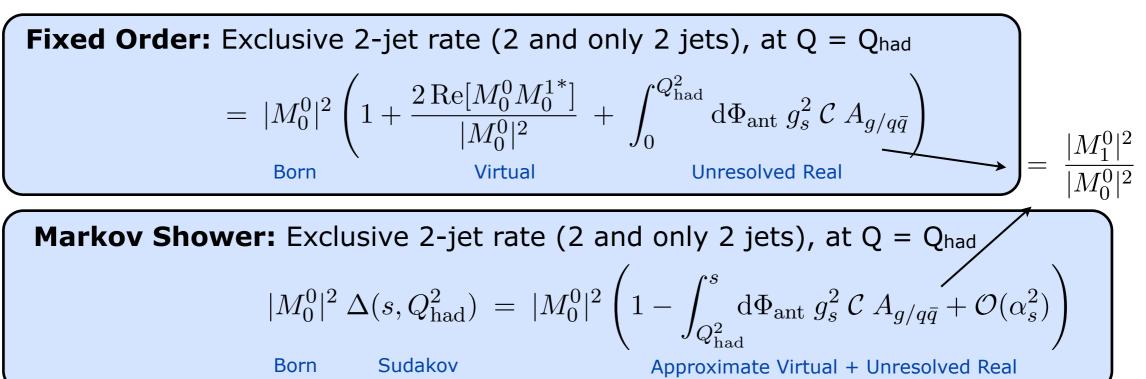
Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

Trivial Example (for notation): $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)



Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

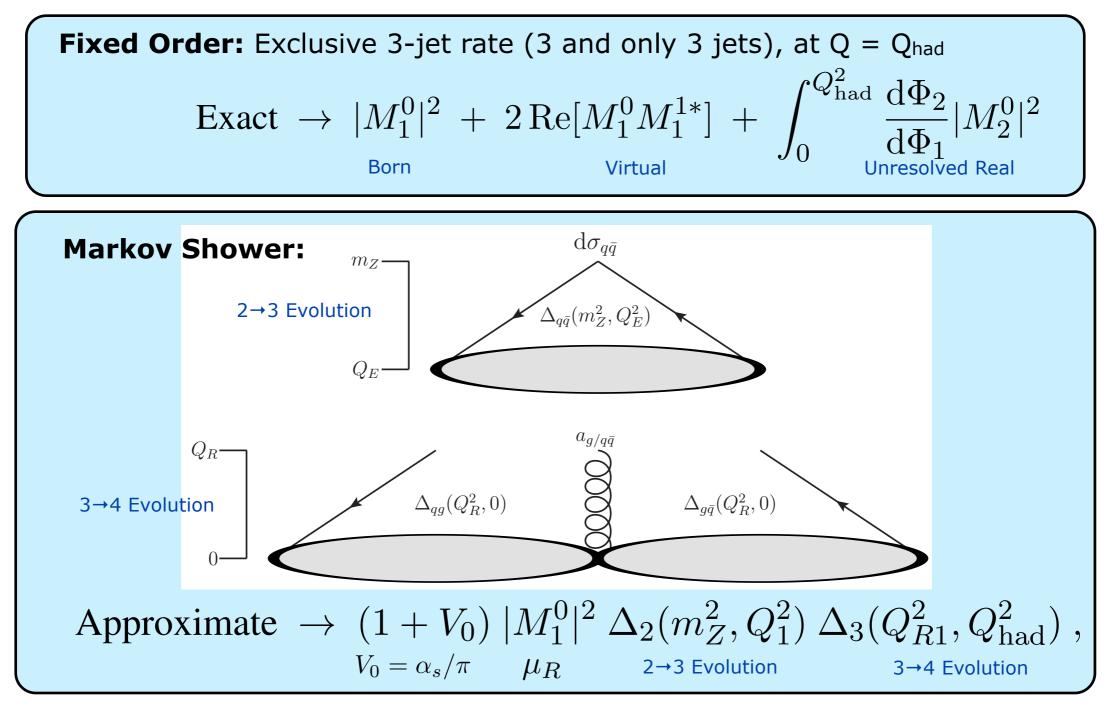
Trivial Example (for notation): $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)



NLO Correction: Subtract and correct by difference

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

Getting Serious: second order



Master Equation

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

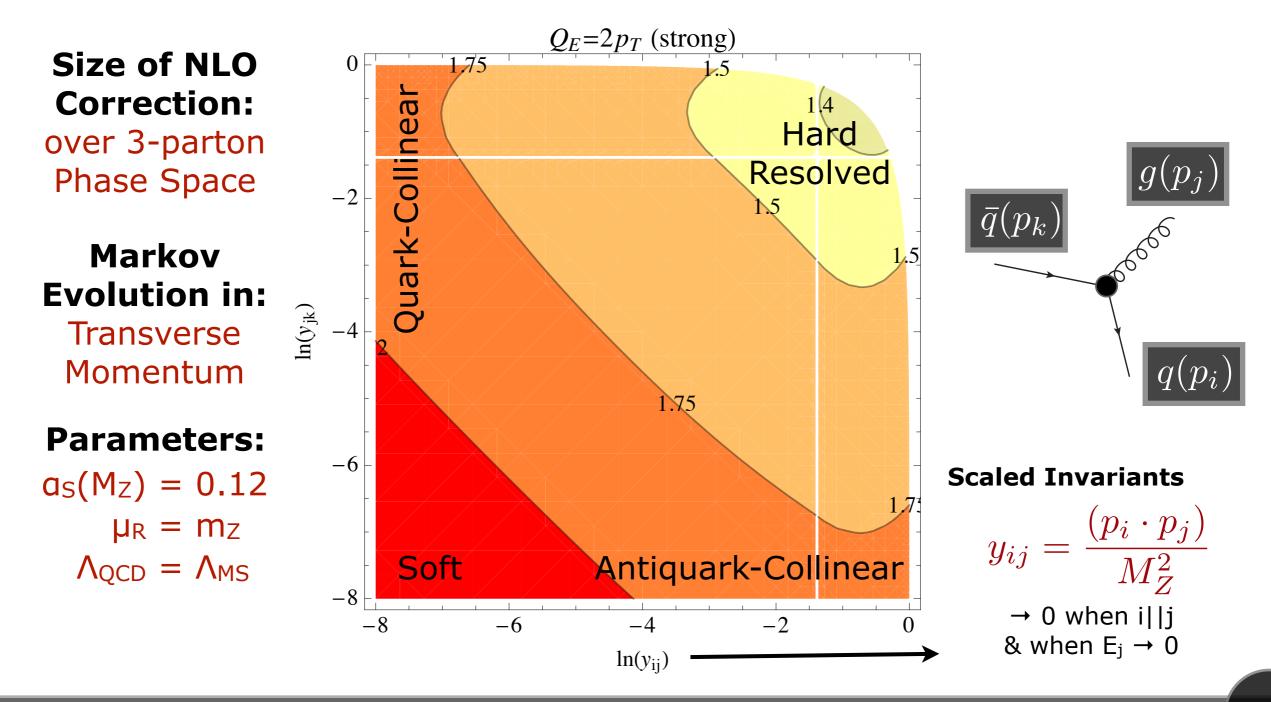
NLO Correction: Subtract and correct by difference

$$\begin{aligned} \mathsf{A}_{\mathsf{NLO}} &= \mathsf{A}_{\mathsf{LO}} \left(1 + \mathsf{V}_{1}\right) \\ V_{1Z}(q, g, \bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\mathsf{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\mathsf{LR}} \left(\frac{\mu_{\mathsf{ME}}^{2}}{\mu_{\mathsf{PS}}^{2}}\right) \\ \mathsf{Standard IR} \\ \mathsf{Singularities} &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^{2}/s_{\bar{q}g}) - 2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{gq}) + \frac{34}{3}\right] & \mathsf{Gluon Emission IR} \\ \mathsf{Singularity} \\ \mathsf{Standard} \\ \mathsf{Finite Terms} \\ \mathsf{Finite Terms} \\ \mathsf{Haching} \\ \mathsf{Terms} (\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{g\bar{q}}^{(1)}(\epsilon, \mu^{2}/s_{qg}) + 1\right] & \mathsf{Gluon Splitting IR} \\ \mathsf{Singularity} \\ \mathsf{Standard} \\ \mathsf{Haching} \\ \mathsf{Terms} (\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[\mathsf{8}\pi^{2} \int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} A_{g/qg}^{*} + 8\pi^{2} \int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} \delta A_{g/q\bar{q}} \\ \mathsf{Standard} \\ \mathsf{Standard} \\ \mathsf{Terms} (\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[\mathsf{8}\pi^{2} \int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} A_{g/qg}^{*} + 8\pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} \delta A_{g/q\bar{q}} \\ \mathsf{Standard} \\ \mathsf{Standard} \\ \mathsf{Terms} (\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[\mathsf{8}\pi^{2} \int_{0}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} (1 - O_{Ej}) A_{g/qg}^{*} + \sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathsf{ant}} \delta A_{g/qg} \\ \mathsf{Standard} \\ \mathsf{Standard} \\ \mathsf{Standard} \\ \mathsf{Terms} (\mathsf{finite}) &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathsf{ant}} (1 - O_{Ej}) A_{g/qg}^{*} + \sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathsf{ant}} \delta A_{g/qg} \\ \mathsf{Othering} \mathsf{Function} \\ \mathsf{Othering} \mathsf{Function} \\ \mathsf{Standard} \\ \mathsf{St$$

Loop Corrections

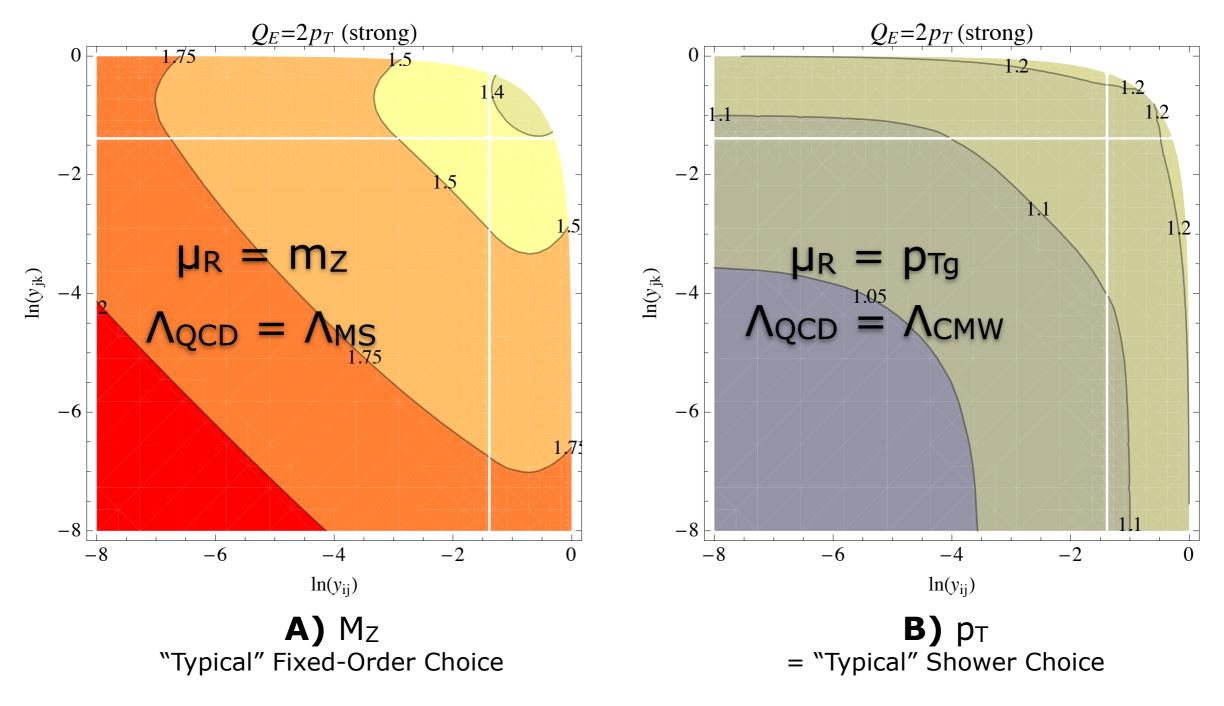
Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

$(MC)^2$: NLO Z \rightarrow 2 \rightarrow 3 Jets + Markov Shower



Choice of µR

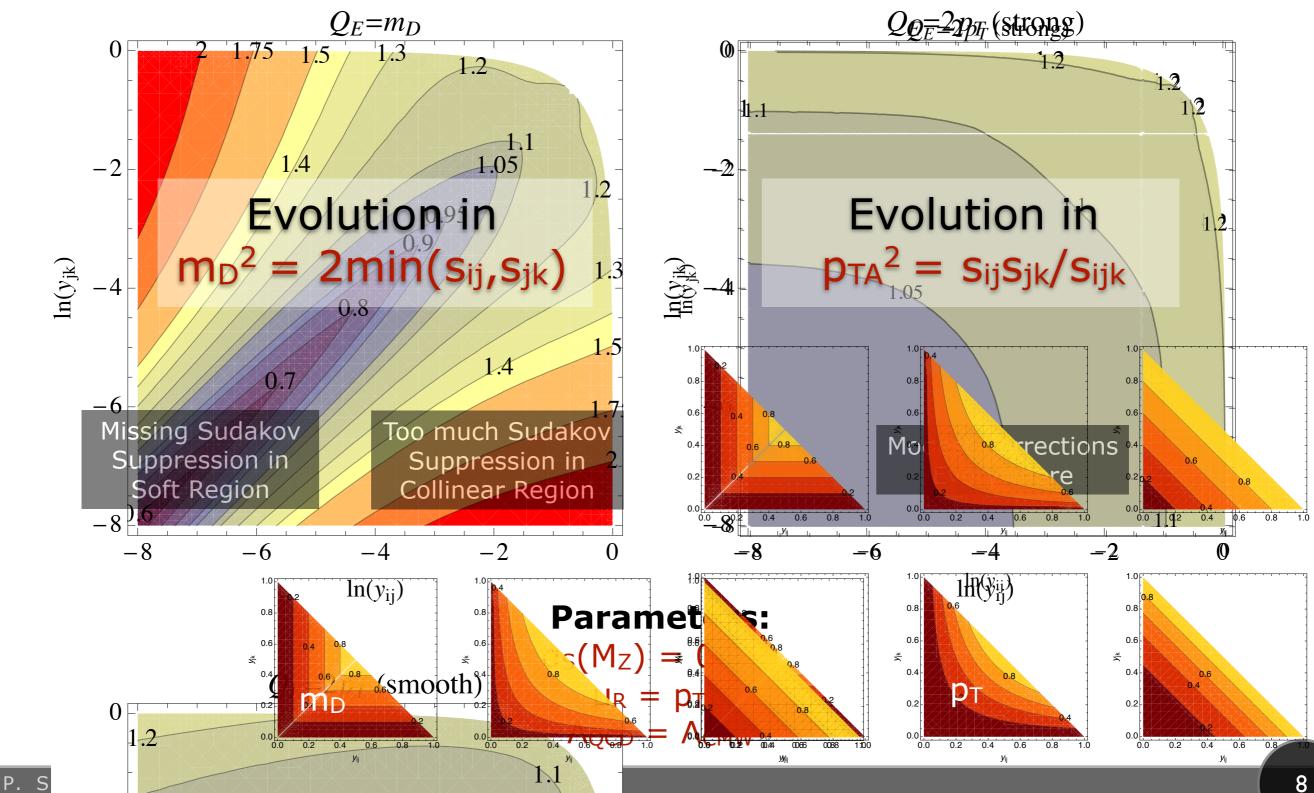
Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)



Markov Evolution in: Transverse Momentum, $a_S(M_Z) = 0.12$

Choice of QEvol

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)



1.0

1.0

Choice of Finite Terms

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

MIN Antennae: MAX Antennae: $\delta A_{3\rightarrow 4} < 0$ $\delta A_{3\rightarrow 4} > 0$ $Q_E = 2p_T$ (strong) $Q_E = 2p_T$ (strong) 0 [].] 0 1.3 1.05 13 -2-2Large finite terms Small finite terms → Small 3→4 Sudakov \rightarrow Large 3 \rightarrow 4 Sudakov (much Sudakov Suppr) (little Sudakov Suppr) $\ln(y_{jk})$ $\ln(y_{jk})$ 1.2 1.05 -6 -6 Note: this just for Plustration. Matching to LO matrix elements fixes δA uniquely -8-6 -20.0 -40 -8-2-6 -40 $\ln(y_{ij})$ $\ln(y_{ij})$ **Parameters:** $a_S(M_Z) = 0.12$, $\mu_R = p_{TA}$, $\Lambda_{QCD} = \Lambda_{CMW}$ Ska $Q_E=2p_T$ (smooth)

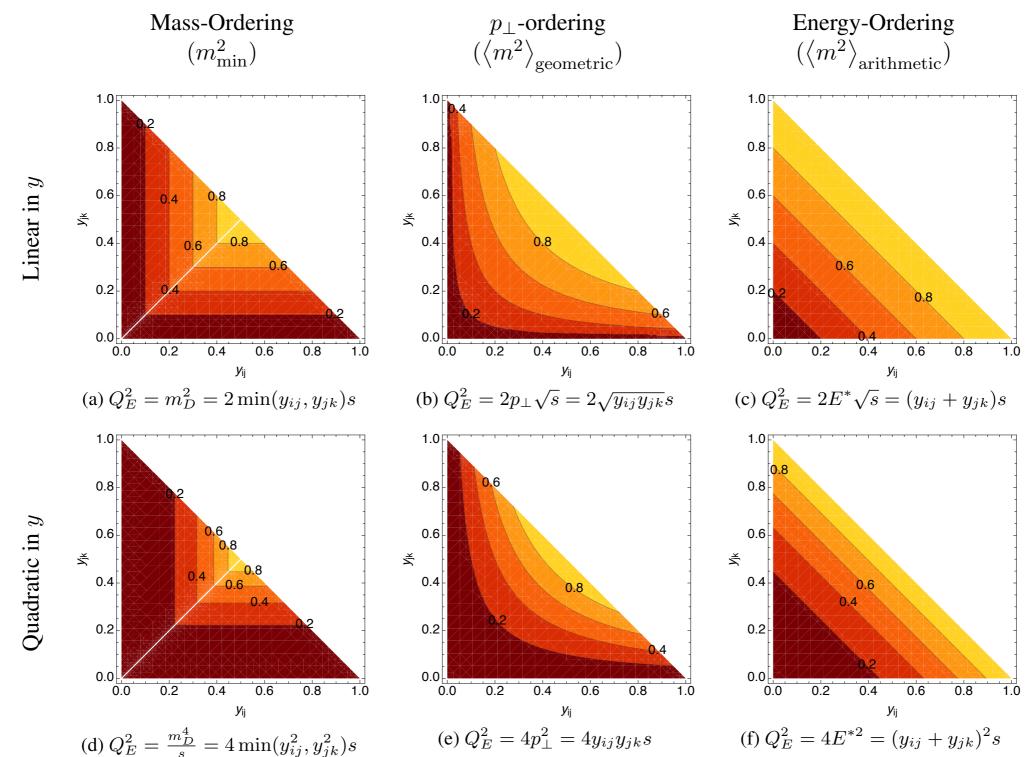
9

Outlook

- Publish 3 papers (~ a couple of months: helicities, NLO multileg, ISR)
- 2. Apply these corrections to a broader class of processes, including ISR → LHC phenomenology
- **3. Automate correction procedure, via interfaces to one-loop codes ...** (goes slightly beyond Binoth Accord; for LO corrections, we currently use own interface to modified MadGraph ME's)
- **4. Variations.** No calculation is more precise than the reliability of its uncertainty estimate \rightarrow aim for full assessment of TH uncertainties.
- **5.** Recycle formalism for all-orders shower corrections?

Phase Space Contours

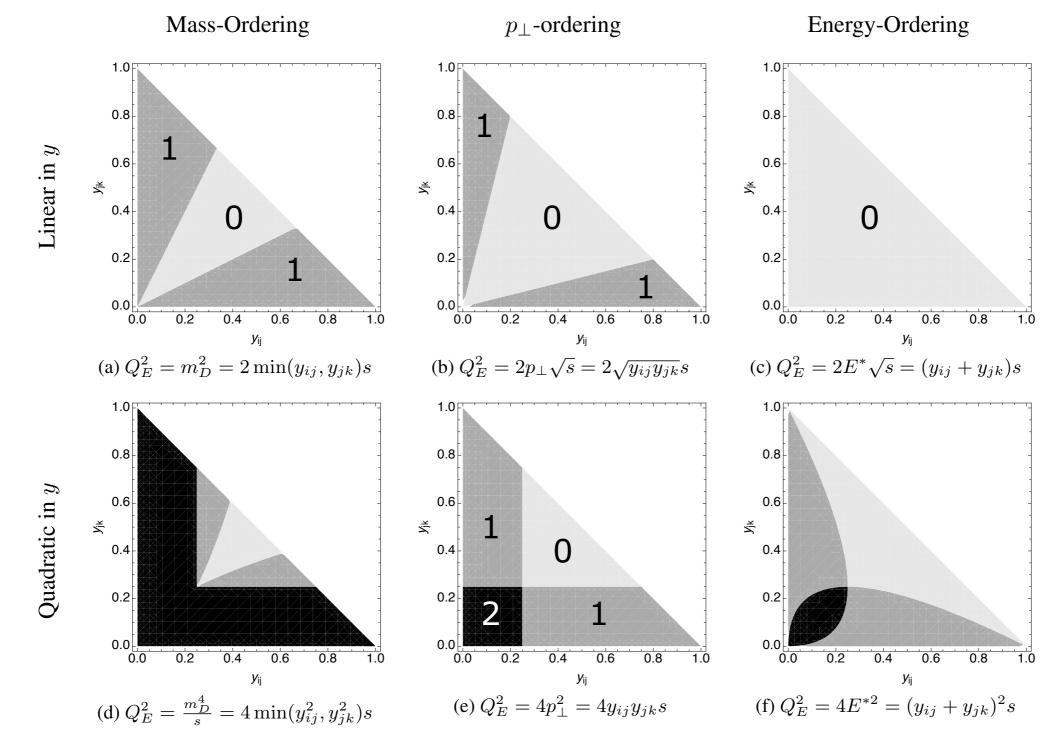
Evolution Variables:

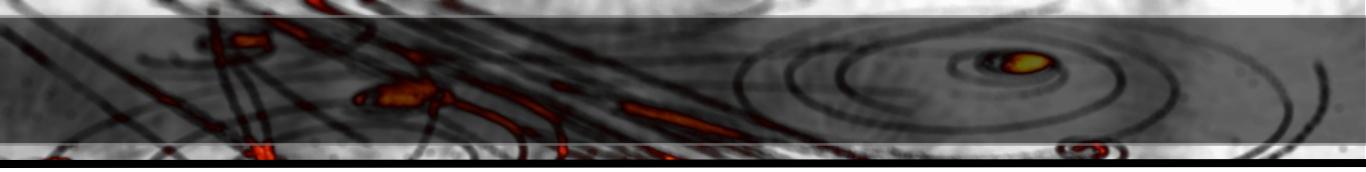


Consequences of Ordering

Number of antennae restricted by ordering condition

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)





Solution: (MC)²

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

Start from quasi-conformal all-orders structure (approximate) Impose exact higher orders as finite corrections Truncate at fixed **scale** (rather than fixed order) **Bonus:** low-scale partonic events → can be hadronized

Problems:

Idea:

Traditional parton showers are history-dependent (non-Markovian)

 \rightarrow Number of generated terms grows like $2^{N}N!$

+ Highly complicated expansions

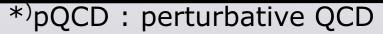
Solution: (MC)² : Monte-Carlo Markov Chain

Markovian Antenna Showers (VINCIA)

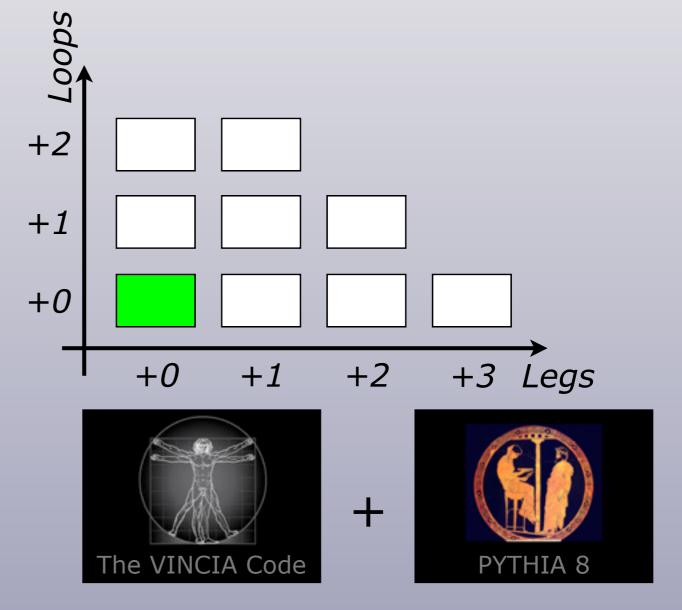
- \rightarrow Number of generated terms grows like N
- + extremely simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

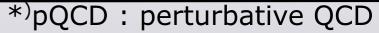
Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

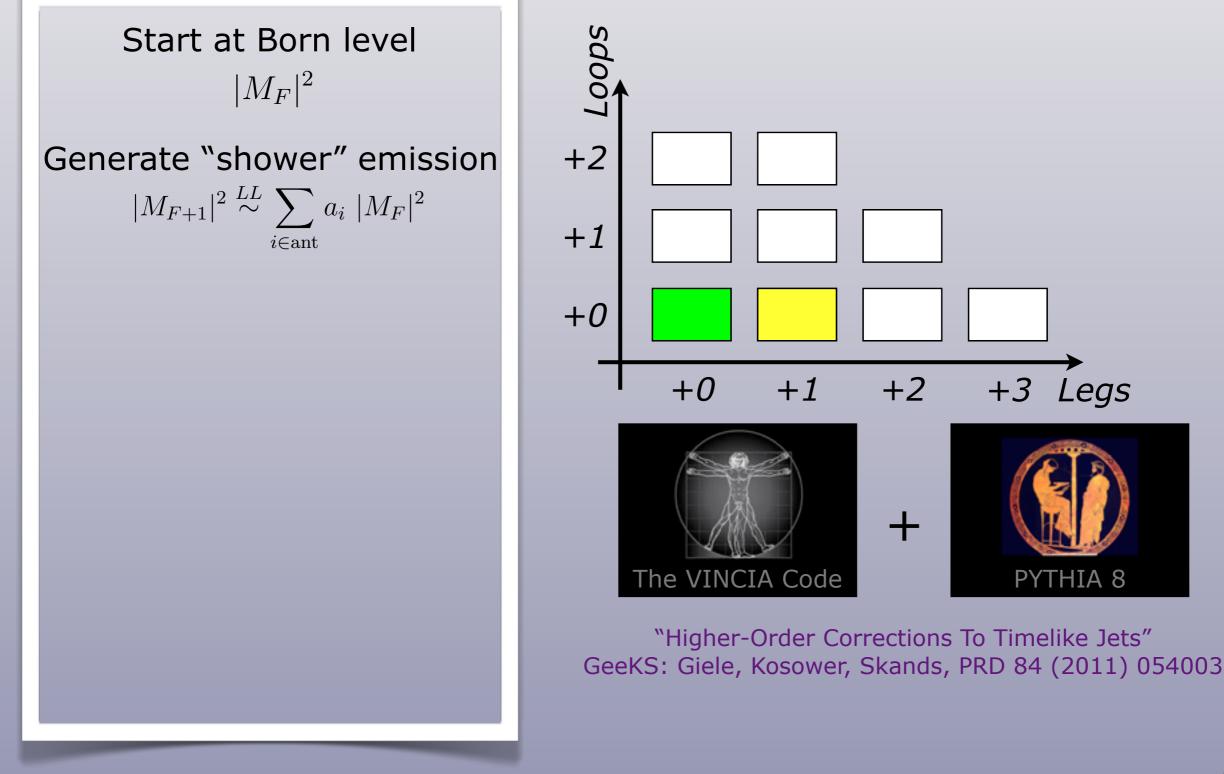


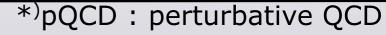
Start at Born level $|M_F|^2$

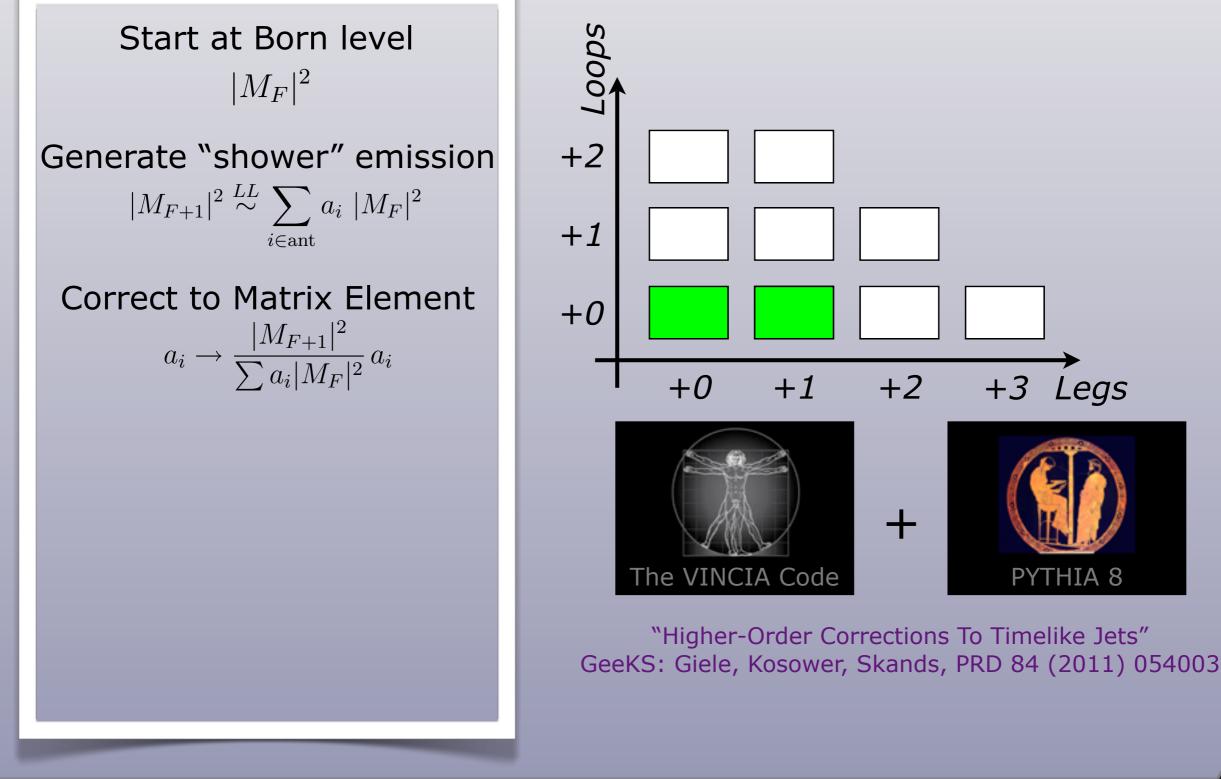


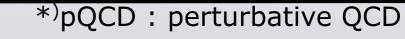
"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

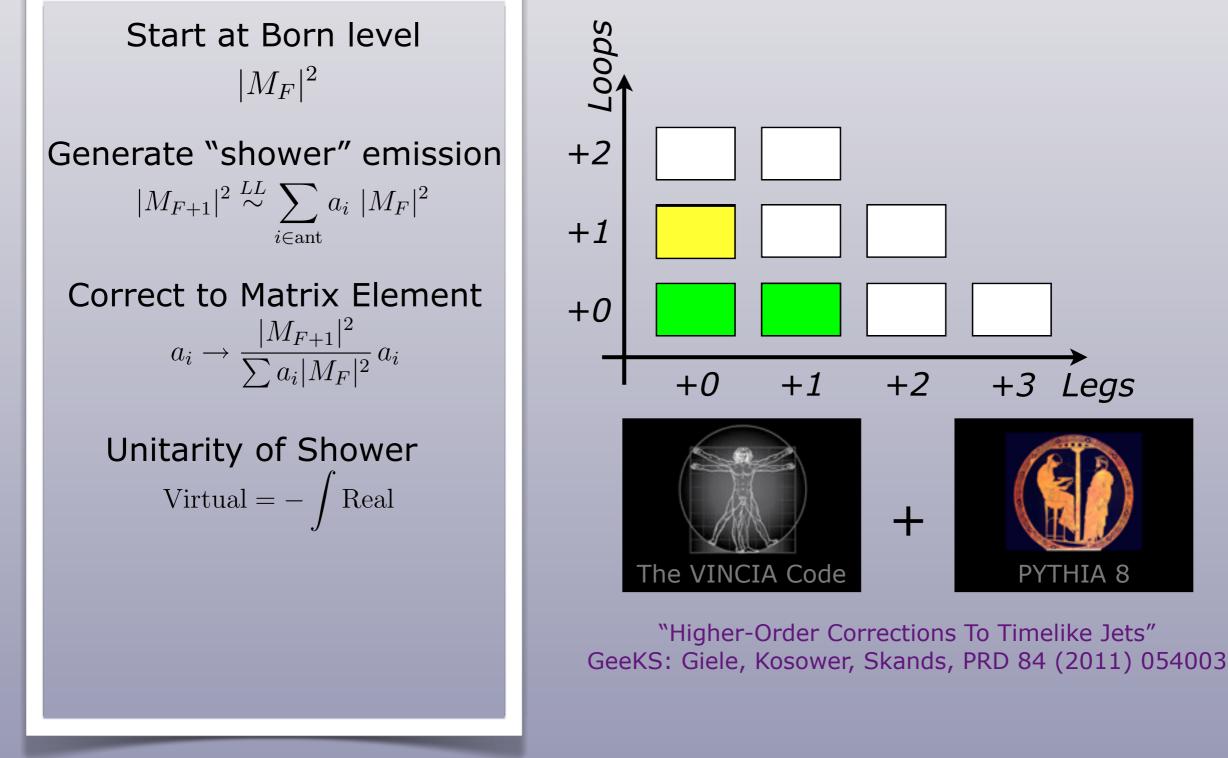


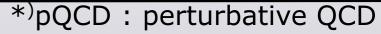


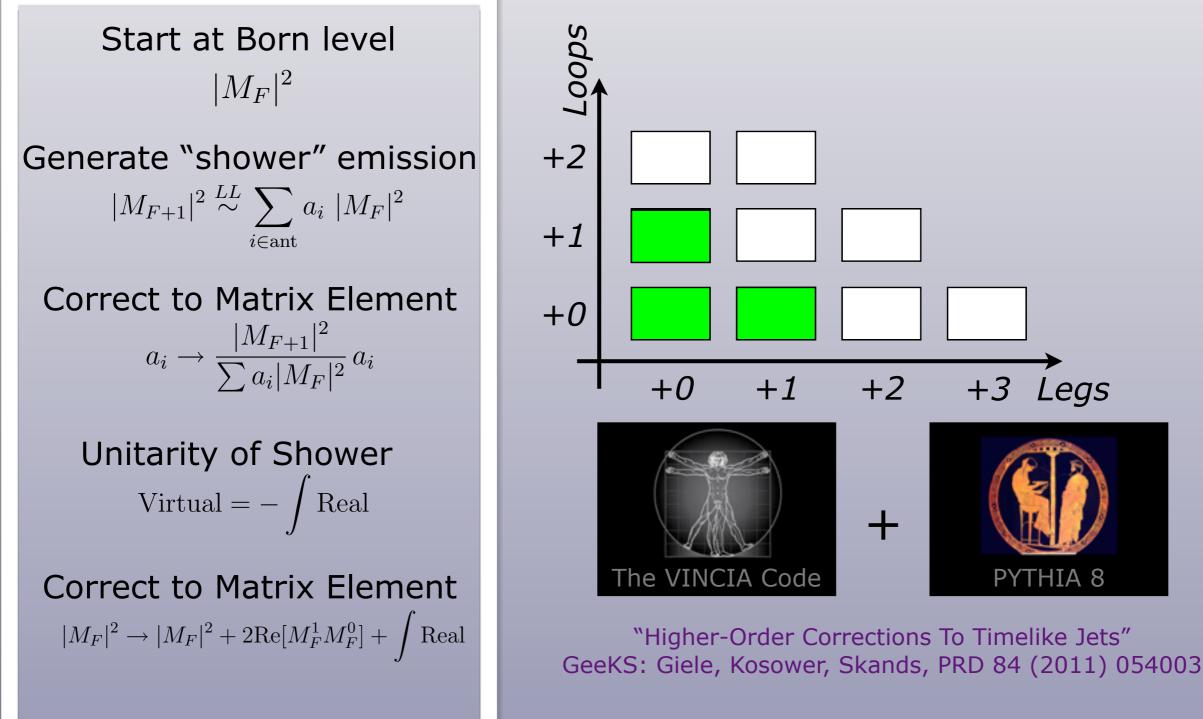


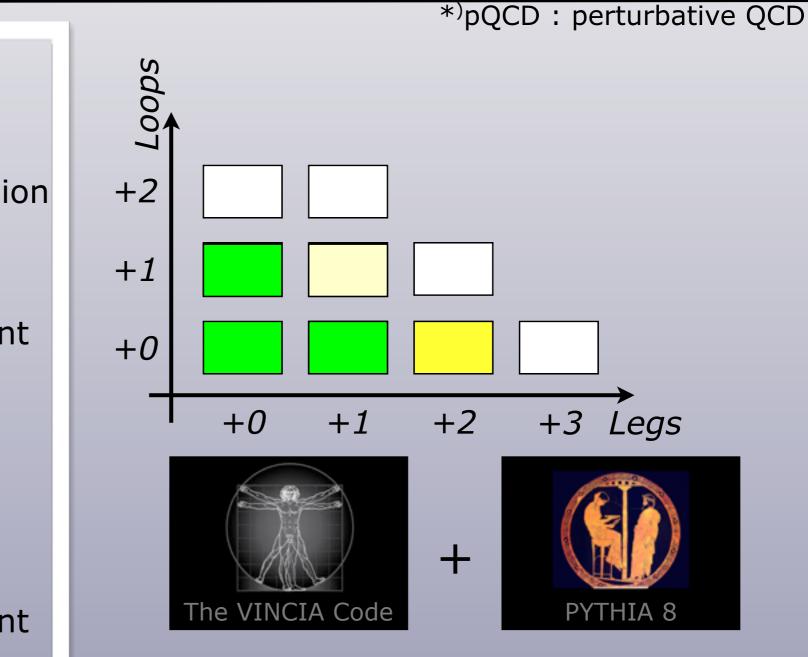








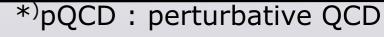


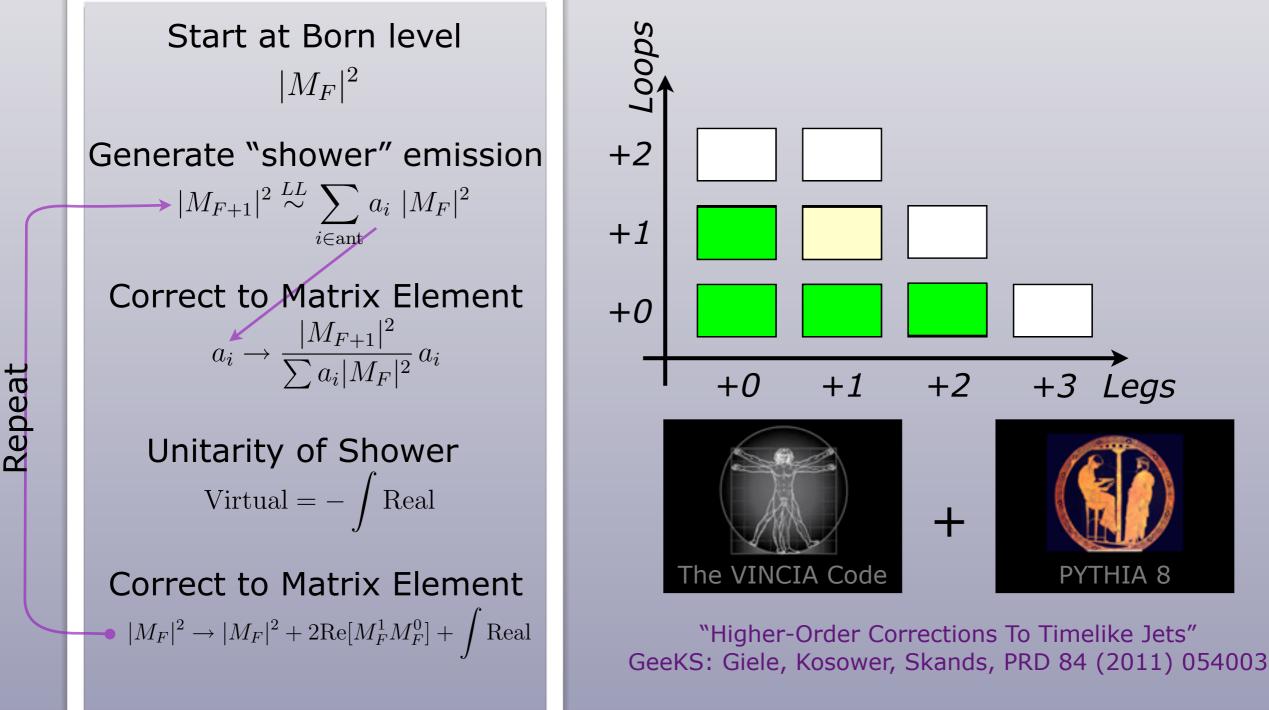


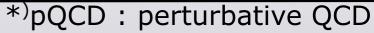
"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

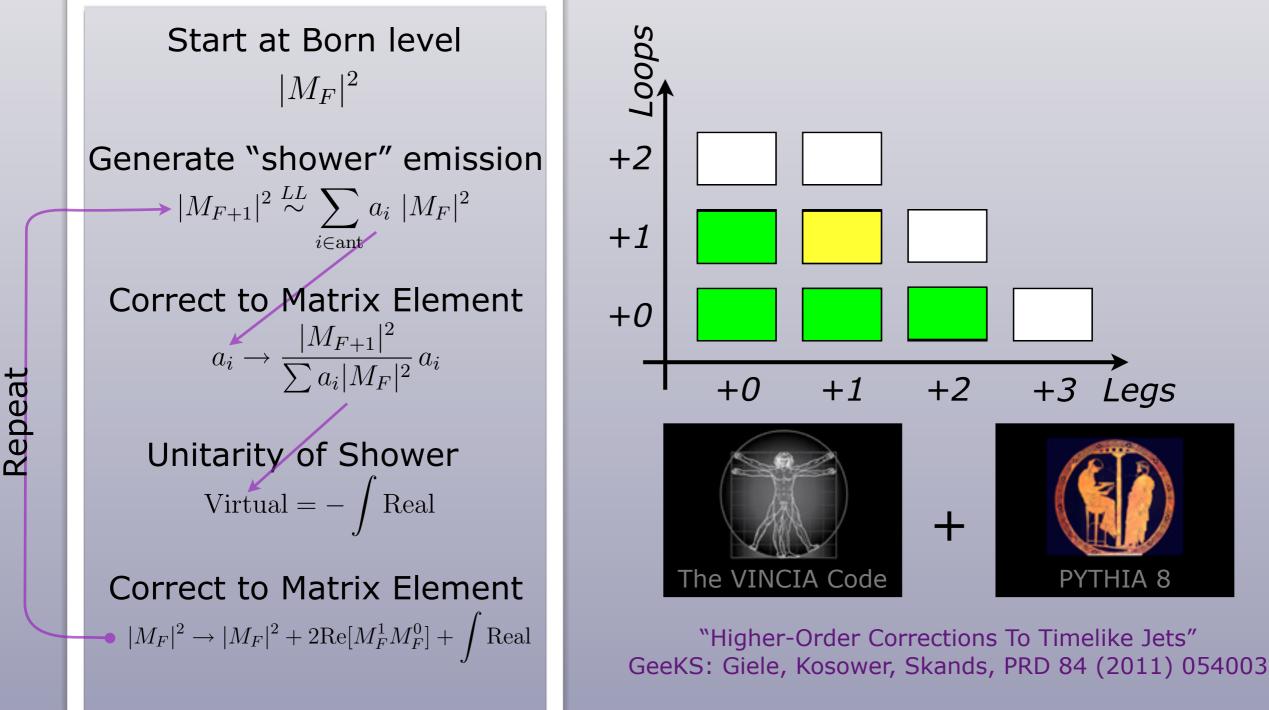
Start at Born level $|M_{F}|^{2}$ Generate "shower" emission $\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ $i \in ant$ Correct to Matrix Element $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = - / RealCorrect to Matrix Element $- |M_F|^2 \to |M_F|^2 + 2 \text{Re}[M_F^1 M_F^0] + \int \text{Real}$

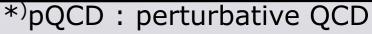
Repeat

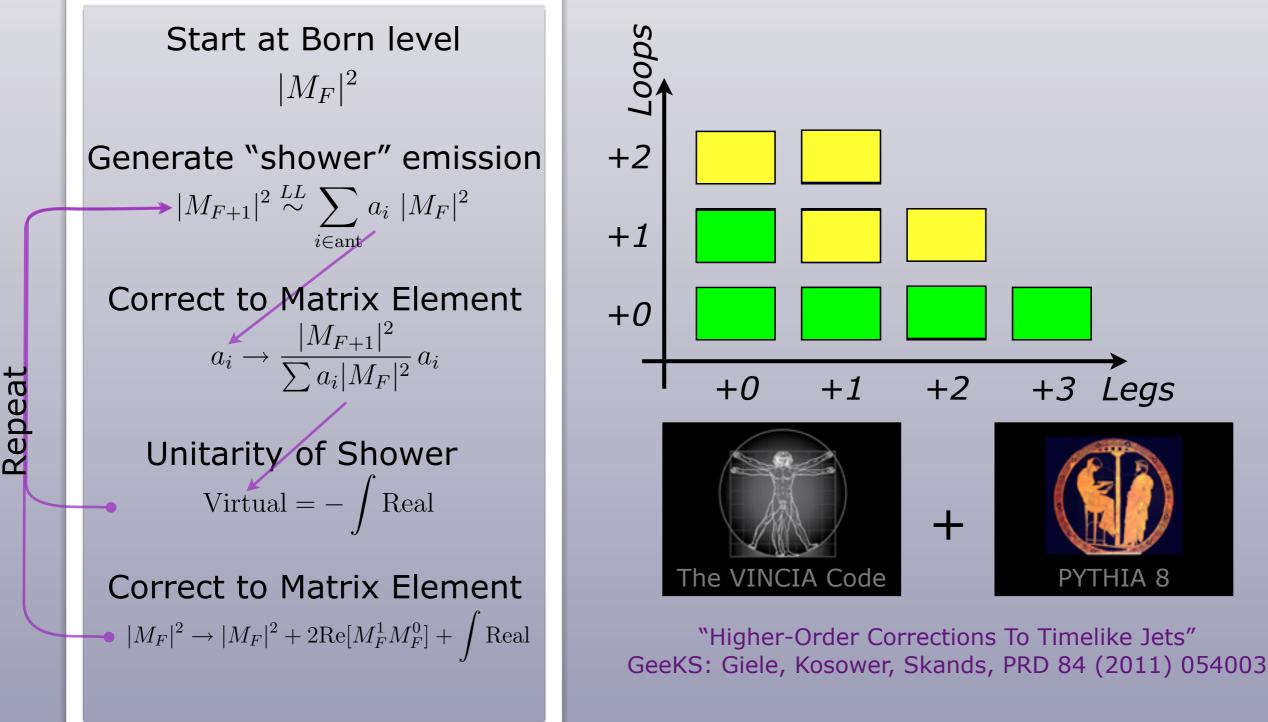




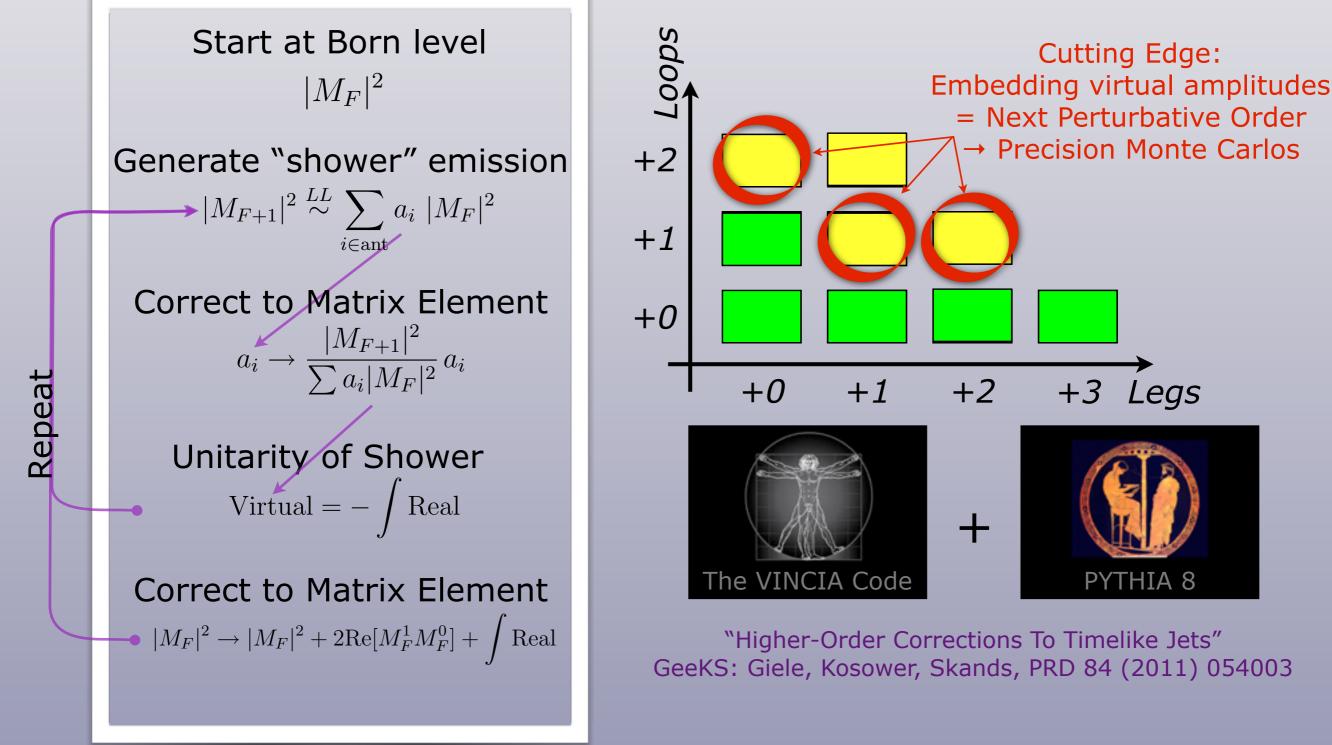








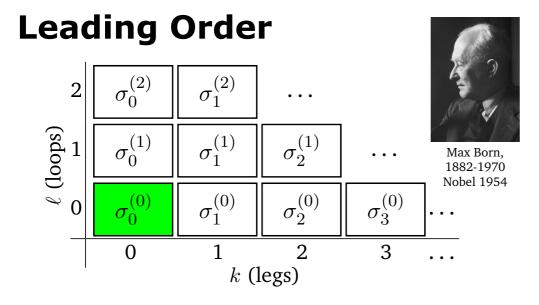
*)pQCD : perturbative QCD



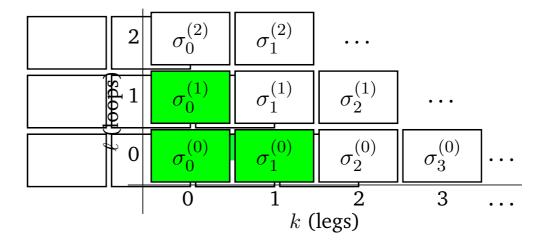
Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)



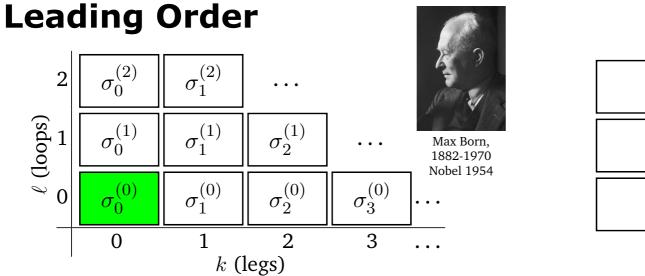
Next-to-Leading Order



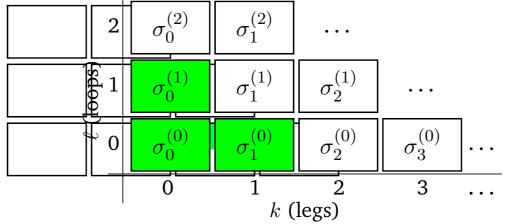
Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)



Next-to-Leading Order

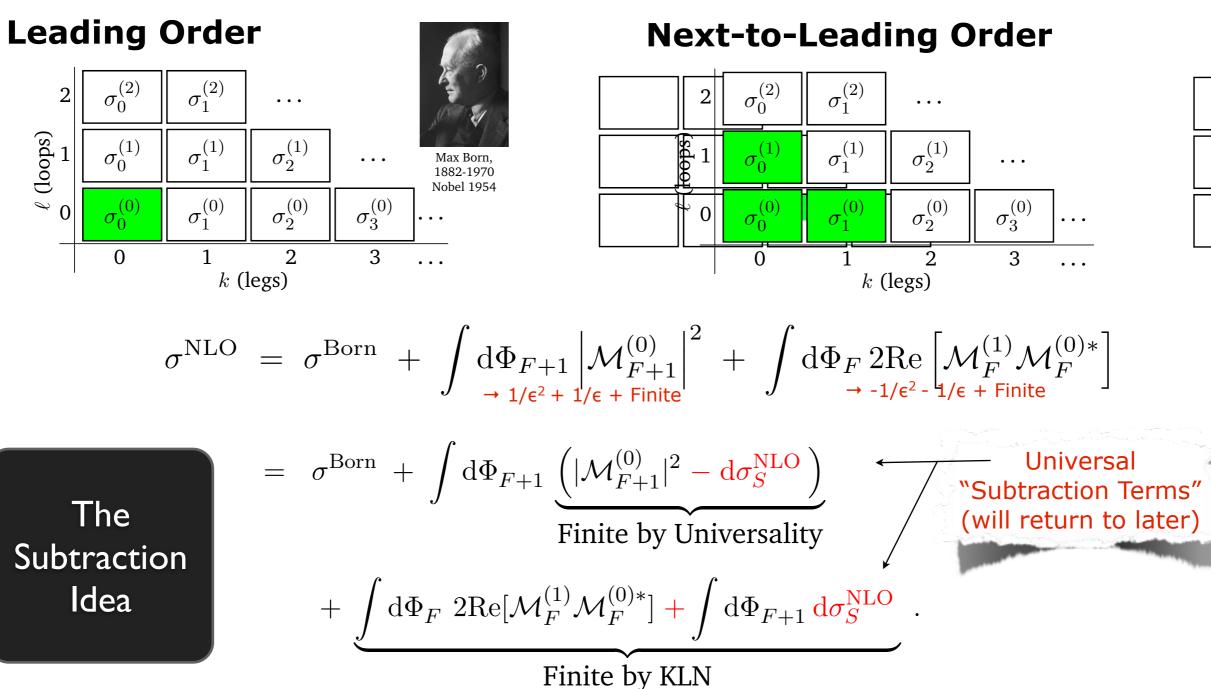


$$\sigma^{\rm NLO} = \sigma^{\rm Born} + \int d\Phi_{F+1} \left| \mathcal{M}_{F+1}^{(0)} \right|^2 + \int d\Phi_F 2\operatorname{Re} \left[\mathcal{M}_F^{(1)} \mathcal{M}_F^{(0)*} \right]_{\rightarrow 1/\epsilon^2 + 1/\epsilon + \operatorname{Finite}} + \int d\Phi_F 2\operatorname{Re} \left[\mathcal{M}_F^{(1)} \mathcal{M}_F^{(0)*} \right]_{\rightarrow 1/\epsilon^2 - 1/\epsilon^2$$

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)



P. Skands

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

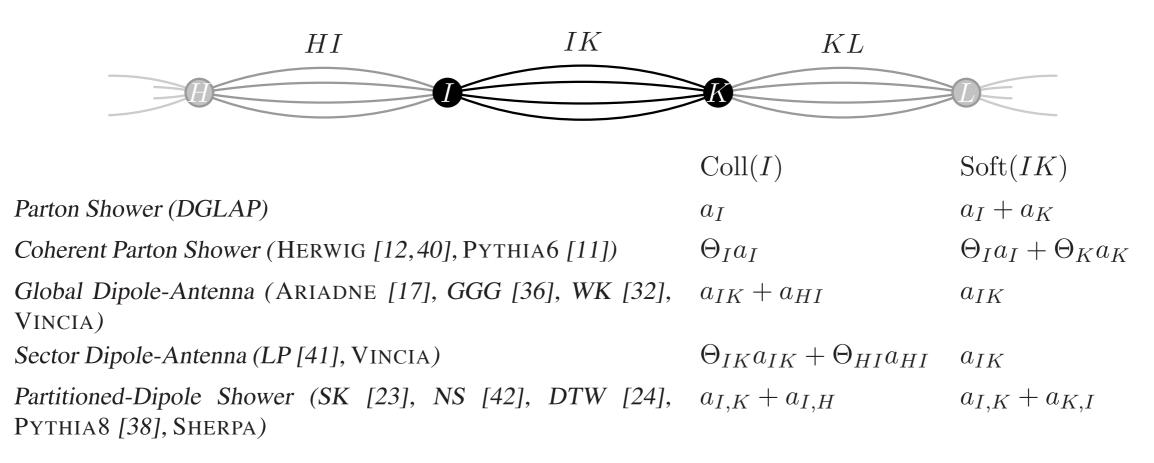


Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)

Global Antennae

×	$rac{1}{y_{ij}y_{jk}}$	$\frac{1}{y_{ij}}$	$rac{1}{y_{jk}}$	$rac{y_{jk}}{y_{ij}}$	$rac{y_{ij}}{y_{jk}}$	$\frac{y_{jk}^2}{y_{ij}}$	$\frac{y_{ij}^2}{y_{jk}}$	1	y_{ij}	y_{jk}
$q\bar{q} \rightarrow qg\bar{q}$										
$++ \rightarrow +++$	1	0	0	0	0	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-2	1	1	0	0	2	0	0
$+- \rightarrow ++ -$	1	0	-2	0	1	0	0	0	0	0
$+- \rightarrow +$	1	-2	0	1	0	0	0	0	0	0
$qg \rightarrow qgg$								•		
$++ \rightarrow +++$	1	0	$-\alpha + 1$	0	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-3	1	3	0	-1	3	0	0
$+- \rightarrow ++-$	1	0	-3	0	3	0	-1	0	0	0
$+- \rightarrow +$	1	-2	$-\alpha + 1$	1	$2\alpha - 2$	0	0	0	0	0
gg ightarrow ggg								1		
$++ \rightarrow +++$	1	$ -\alpha+1 $	$-\alpha + 1$	$2\alpha - 2$	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-3	-3	3	3	-1	-1	3	1	1
$+- \rightarrow ++-$	1	$-\alpha + 1$	-3	$2\alpha - 2$	3	0	-1	0	0	0
$+- \rightarrow +$	1	-3	$-\alpha + 1$	3	$2\alpha - 2$	-1	0	0	0	0
$qg ightarrow q \bar{q}' q'$		I						1		
$++ \rightarrow ++ -$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	0	0
$+- \rightarrow ++-$	0	0	$\frac{1}{2}$ $\frac{1}{2}$	0	-1	0	$\frac{\overline{1}}{2}$	0	0	0
$+- \rightarrow +$	0	0	$\tilde{0}$	0	0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	0	0
$gg \rightarrow g\bar{q}q$		1						1		
$++ \rightarrow ++-$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{\tilde{1}}{2}$	0	0	0
$+- \rightarrow + + -$	0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	-1	0	$\frac{1}{21}$	0	0	0
$+- \rightarrow +-+$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0

Sector Antennae

Global
$$\bar{a}_{g/qg}^{\text{gl}}(p_i, p_j, p_k) \xrightarrow{s_{jk} \to 0} \frac{1}{s_{jk}} \left(P_{gg \to G}(z) - \frac{2z}{1-z} - z(1-z) \right)$$

Sector populated by IK→ijk Sector populated by JI→jki Sector populated by KJ→kij Sector 1.0 1.0_F **1.0**F Sector k Sector i Sector j 0.8 0.8 j radiated by (i,k) k radiated by (j,i) i radiated by (k,j) 0.8 $s_{jk}/s_{jjk} = 1-x_{j}$ 8.0 9.0 $\begin{array}{l} 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \end{array}$ \rightarrow Full P(z) $s_{jk}/s_{jjk} = 1-x_{j}$ 9.0 9.0 9.0 Only a must be single term contained in each in every phase ″ خ 0.2[∣] antenna space point 0.0 0.0 0.0 0.4 0.4 0.8 0.0 0.0 0.2 0.6 0.8 1.0 0.0 0.2 0.6 1.0 0.2 0.4 0.6 0.8 1.0 $y_{ij} = s_{ij}/s_{ijk} = 1-x_k$ $y_{ij} = s_{ij}/s_{ijk} = 1-x_k$ $y_{ij} = s_{ij}/s_{ijk} = 1-x_k$ $\bar{a}_{j/IK}^{\text{sct}}(y_{ij}, y_{jk}) = \bar{a}_{j/IK}^{\text{gl}}(y_{ij}, y_{jk}) + \delta_{Ig}\delta_{H_KH_k} \left\{ \delta_{H_IH_i}\delta_{H_IH_j} \left(\frac{1 + y_{jk} + y_{jk}^2}{y_{ij}} \right) \right\}$ + $\delta_{H_IH_j}\left(\frac{1}{y_{ij}(1-y_{jk})}-\frac{1+y_{jk}+y_{jk}^2}{y_{ij}}\right)$ Sector = Global + $+ \delta_{Kg} \delta_{H_I H_i} \left\{ \delta_{H_I H_j} \delta_{H_K H_k} \left(\frac{1 + y_{ij} + y_{ij}^2}{y_{jk}} \right) \right\}$ additional collinear terms (from "neighboring" antenna) + $\delta_{H_K H_j} \left(\frac{1}{y_{jk}(1-y_{ij})} - \frac{1+y_{ij}+y_{ij}^2}{y_{jk}} \right) \right\}$

 \rightarrow P(z) = Sum over two

neigboring antennae

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

 $\left(\left(\sum_{i=1}^{j=1} -2 \operatorname{terms}^{j=1} \right) \right) \xrightarrow{j=1}{2 \operatorname{terms}^{j=1}}$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

 $a_i \rightarrow \overline{}$

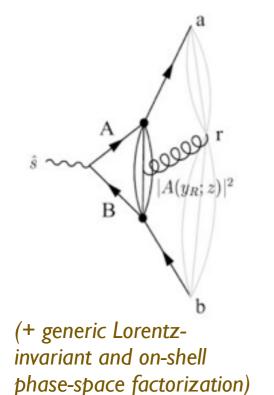
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

 $2^{n}n! \rightarrow n!$

Giele, Kosower, Skands, PRD 84 (2011) 054003



+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = min(Q_{E1}, Q_{E2}, ..., Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

+ Sector antennae

 \rightarrow I term at *any* order

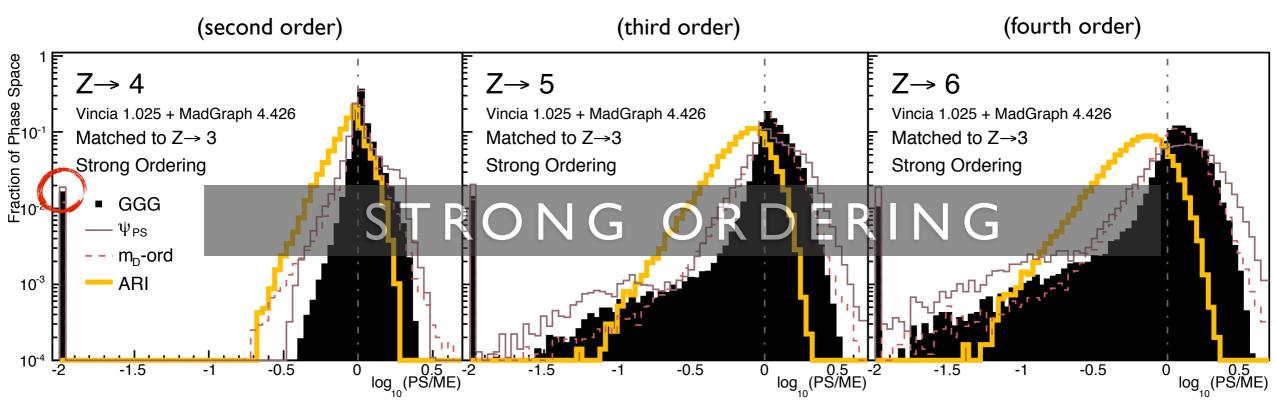
Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 Lopez-Villarejo, Skands, JHEP 1111 (2011) 150 Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

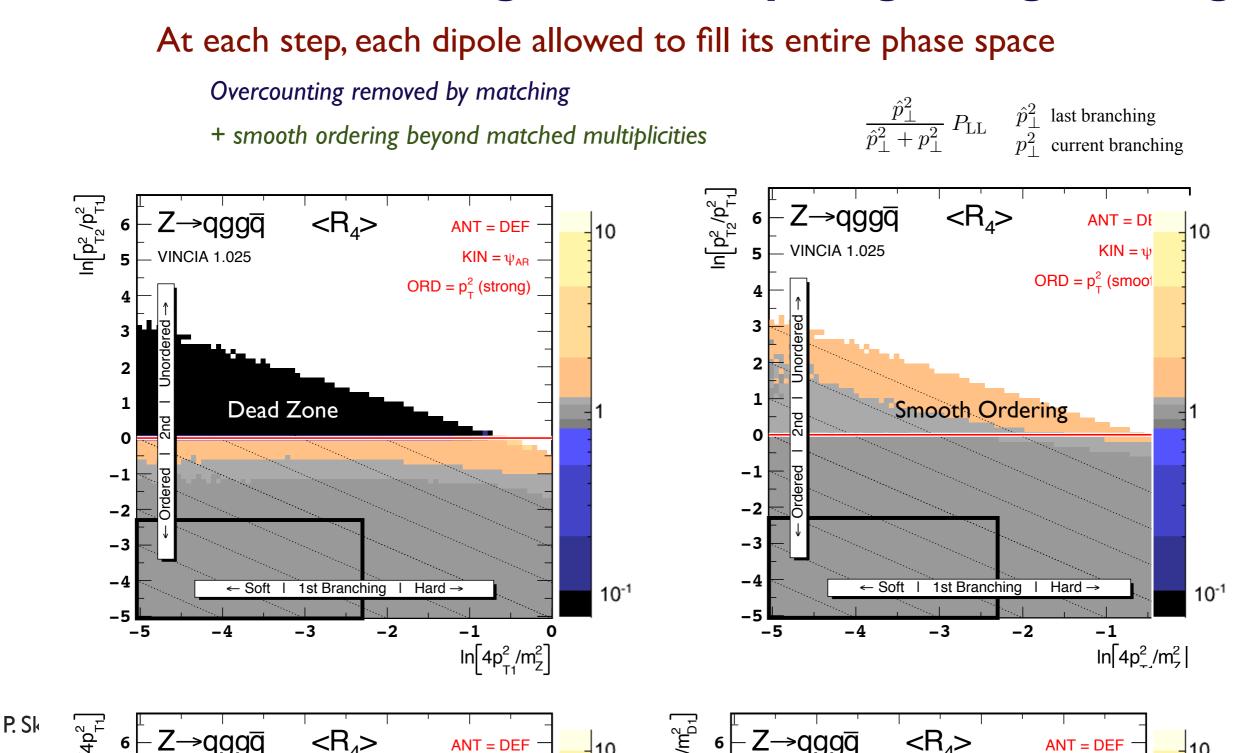


Plot distribution of Log₁₀(PS/ME)

Dead Zone: I-2% of phase space have no strongly ordered paths leading there*

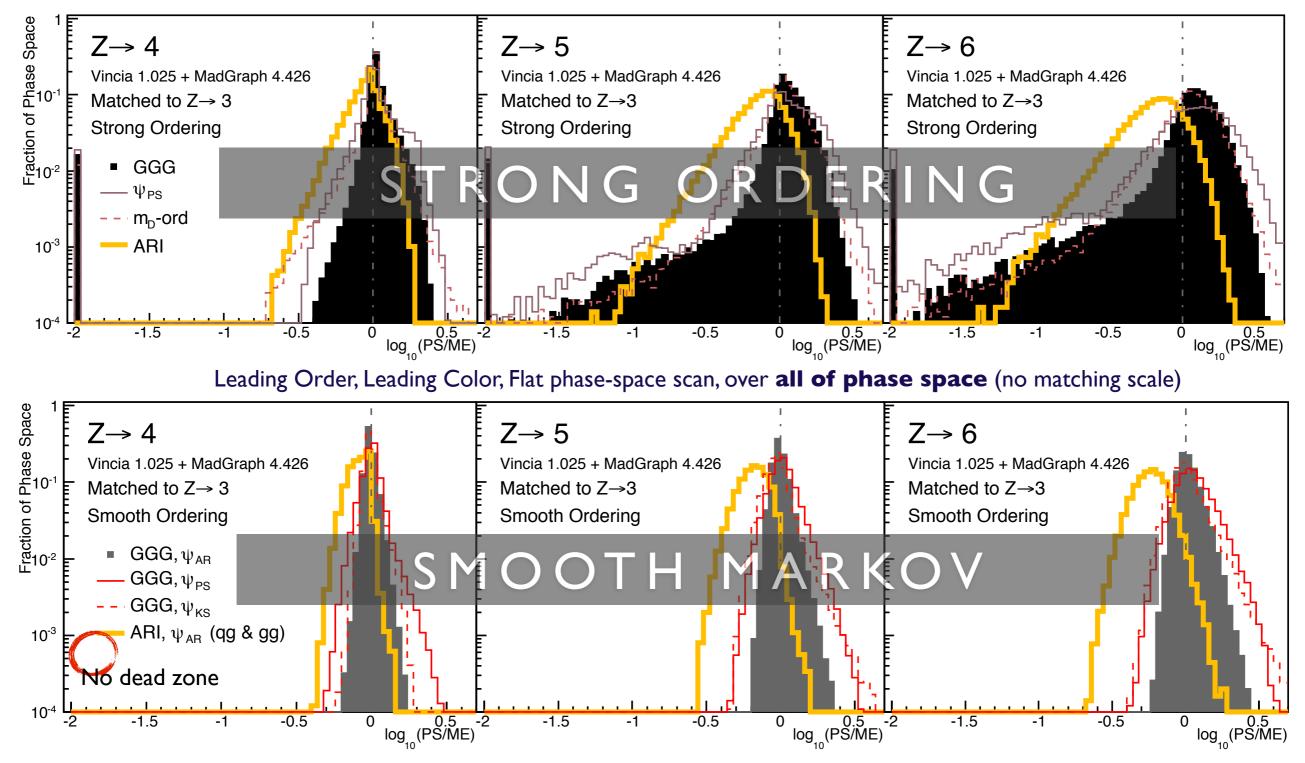
*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

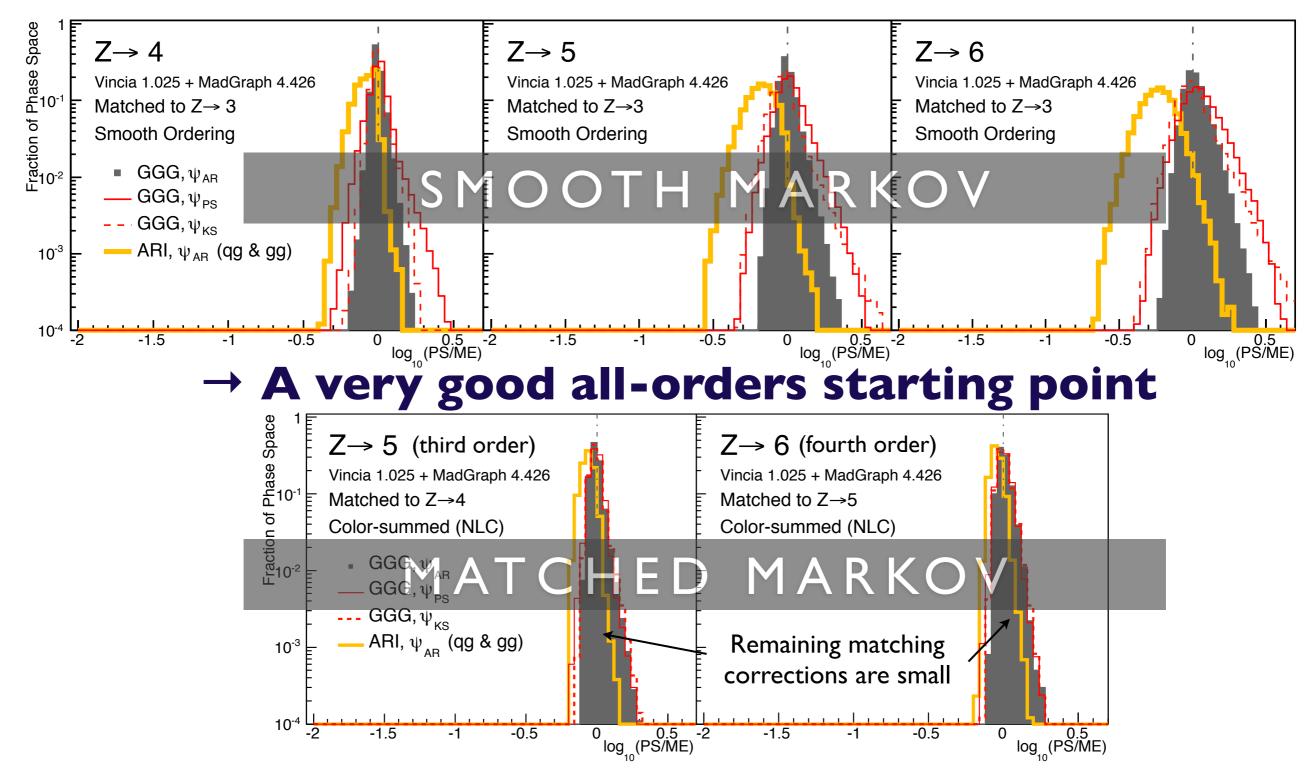


Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)



+ Matching (+ full colour)



IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056

 $q\bar{q} \to qg\bar{q} \text{ antenna function} \qquad \qquad X_{ijk}^0 = S_{ijk,IK} \frac{|\mathcal{M}_{ijk}^0|^2}{|\mathcal{M}_{IK}^0|^2}$ $A_3^0(1_q, 3_g, 2_{\bar{q}}) = \frac{1}{s_{123}} \left(\frac{s_{13}}{s_{23}} + \frac{s_{23}}{s_{13}} + 2\frac{s_{12}s_{123}}{s_{13}s_{23}} \right)$

Integrated antenna

$$\mathcal{P}oles\left(\mathcal{A}_{3}^{0}(s_{123})\right) = -2\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon, s_{123}\right)$$
$$\mathcal{F}inite\left(\mathcal{A}_{3}^{0}(s_{123})\right) = \frac{19}{4} \ .$$
$$\mathcal{X}_{ijk}^{0}(s_{ijk}) = \left(8\pi^{2}\left(4\pi\right)^{-\epsilon}e^{\epsilon\gamma}\right)\int \mathrm{d}\Phi_{X_{ijk}} X_{ijk}^{0}.$$

Singularity Operators

$$\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon,\mu^{2}/s_{q\bar{q}}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{3}{2\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q\bar{q}}}\right)^{\epsilon}$$
$$\mathbf{I}_{qg}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{5}{3\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qgg$$
$$\mathbf{I}_{qg,F}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = \frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \frac{1}{6\epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qq'q'$$

Loop Corrections

The choice of evolution variable (Q)

Variation with $\mu_R = m_D = 2 \min(s_{ij}, s_{jk})$

