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Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

Evolution Scale
Infinite family of continuously deformable QE

E.g.: transverse momentum, invariant mass, energy
Hard 2→n: “smooth ordering” & LO matching

Radiation functions
Laurent-series with arbitrary coefficients, anti 
E.g.: Gehrmann-Gehrmann-Glover, ARIADNE, MIN, MAX 
+ Helicity-dependence & Massive fermions (c,b,t)

Kinematics maps
Formalism derived for infinitely deformable κ3→2

Special cases: ARIADNE, Kosower, + massive generalizations
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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P.  S k a n d s

Changing Paradigm

2

Ask:

Is it possible to use the all-orders structure that the shower so 
nicely generates for us, as a substrate, a stratification, on top of 
which fixed-order amplitudes could be interpreted as corrections, 
which would be finite everywhere?

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
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Changing Paradigm

2

Ask:

Is it possible to use the all-orders structure that the shower so 
nicely generates for us, as a substrate, a stratification, on top of 
which fixed-order amplitudes could be interpreted as corrections, 
which would be finite everywhere?

Problems: 
Traditional parton showers are history-dependent (non-Markovian)
→ Number of generated terms grows like 2N N!
+ Highly complicated expansions

Solution: (MC)2 : Monte-Carlo Markov Chain
Markovian Antenna Showers (VINCIA)
→ Number of generated terms grows like N
+ extremely simple expansions

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003



P.  S k a n d s

One-Loop Corrections

Trivial Example (for notation):    Z→qq First Order (~POWHEG)

3

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,

g2
s

2C
F

A
g/qq̄

=

|M0
1 |2

|M0
0 |2

. (48)

The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes

|M0
0 |2 �(s, 0) = |M0

0 |2
✓
1�

Z
s

0
d�ant g

2
s
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A
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+O(↵2
s

)

◆
, (49)

which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is

|M0
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1
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⇤
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◆
, (50)

where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is

2Re[M0
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1
0
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then
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19

Born Virtual Unresolved Real

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
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, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order
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with Q the resolution scale of whatever (IR safe5) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level matrix element,

Approximate ! |M0
0 |2 , (42)

where the subscript indicates the parton multiplicity beyond Born level (i.e., zero indicates the Born
level) and the superscript indicates the loop order beyond the Born level (i.e., zero indicates the Born
loop order). Since cancellation of real and virtual corrections is exact in both the unmatched shower as
well as in the tree-level matching scheme described above, there are no further corrections to consider
for the inclusive rate. I.e., the total integrated cross section produced by the shower is obtained merely
by integrating eq. (42) over all of the Born-level phase space (or by integrating it over a restricted range
if phase-space cuts are imposed). We now seek a correction term, V0, such that

Matched ! (1 + V0) |M0
0 |2 (43)

gives the correct inclusive NLO rate. From eq. (40), we know that the correction term for Z decay is

V0 =

↵
s

⇡
. (44)

We now turn to the prescription for systematically deriving the corresponding term for any process.
On the fixed-order side, the inclusive cross section at NLO, differentially in the Born-level phase

space, is given by an expression of the form
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where the integral in the last term runs over clusterings of the additional parton back to the Born level.
At the inclusive level, the fully differential Born-level cross section is therefore only well-defined in the
context of a specific prescription for which bins in the Born-level phase space are populated by each
(Born+1)-parton phase-space point. Although a natural such relation is furnished by the “inverse” of
the shower algorithm, a simpler path is obtained by instead considering the cross section at the exclusive
level.

3.2.2 Exclusive Born

The shower expression for the exclusive Z ! qq̄ rate (defined at the hadronization cutoff, which is the
lowest meaningful resolution scale in the perturbative shower) is
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5We use infrared (IR) safety to refer to the combination of soft and collinear safety.
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Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
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, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

=

↵
s

2⇡
2C

F

�
2I

qq̄

(✏, µ2/m2
Z

)� 4

�
, (51)

with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then
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with Q the resolution scale of whatever (IR safe5) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level matrix element,

Approximate ! |M0
0 |2 , (42)

where the subscript indicates the parton multiplicity beyond Born level (i.e., zero indicates the Born
level) and the superscript indicates the loop order beyond the Born level (i.e., zero indicates the Born
loop order). Since cancellation of real and virtual corrections is exact in both the unmatched shower as
well as in the tree-level matching scheme described above, there are no further corrections to consider
for the inclusive rate. I.e., the total integrated cross section produced by the shower is obtained merely
by integrating eq. (42) over all of the Born-level phase space (or by integrating it over a restricted range
if phase-space cuts are imposed). We now seek a correction term, V0, such that

Matched ! (1 + V0) |M0
0 |2 (43)

gives the correct inclusive NLO rate. From eq. (40), we know that the correction term for Z decay is

V0 =

↵
s

⇡
. (44)

We now turn to the prescription for systematically deriving the corresponding term for any process.
On the fixed-order side, the inclusive cross section at NLO, differentially in the Born-level phase

space, is given by an expression of the form
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where the integral in the last term runs over clusterings of the additional parton back to the Born level.
At the inclusive level, the fully differential Born-level cross section is therefore only well-defined in the
context of a specific prescription for which bins in the Born-level phase space are populated by each
(Born+1)-parton phase-space point. Although a natural such relation is furnished by the “inverse” of
the shower algorithm, a simpler path is obtained by instead considering the cross section at the exclusive
level.

3.2.2 Exclusive Born

The shower expression for the exclusive Z ! qq̄ rate (defined at the hadronization cutoff, which is the
lowest meaningful resolution scale in the perturbative shower) is
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5We use infrared (IR) safety to refer to the combination of soft and collinear safety.
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NLO Correction: Subtract and correct by difference

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
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= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is

|M0
0 |2 + 2Re[M0

0M
1
0
⇤
] = |M0

0 |2
✓
1 +

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

◆
, (50)

where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).

Sudakov and matrix-element expressions, hence from now on we replace 2C
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in the above expression
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The 3-parton Sudakov factor, �3, imposes exclusivity and is given by
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where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is instead min(Q2
1, sj),
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However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2

s

) to those present in the fixed-order calculation.
On the fixed-order side, the expression for the 3-parton exclusive rate is simply
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where the integral that has been added corresponds to unresolved 3-parton configurations, with A again
given by eq. (48). Though eq. (46) is now defined entirely in 4 dimensions, we still need dimensional
regularization to regulate the two last terms in the fixed-order expression. In principle, the integral in
the last term could be carried out explicitly, but it is simpler to rewrite it as
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where the first term is just the full antenna integral, which was given in eq. (52), and the second term is
identical to the one appearing in eq. (46), with which it cancels completely, cf. the definition of the tree-
level matching, eq. (48). The final correction term derived by this procedure is therefore again exactly
equal to ↵

s

/⇡ ⇥ |M0
0 |2.

Note that the scale and scheme dependence of the ↵
s

/⇡ correction is not specified since its ambiguity
is formally of order ↵2

s

. For definiteness we take the renormalization scale for this correction to be
proportional to the invariant mass of the system, µ

R

= kinc
µ

p
ŝ (so that µ

R

= kinc
µ

m
Z

at the Z pole),
with kinc

µ

thus representing the free parameter that governs the choice of renormalization scale for the
total inclusive rate for Z ! hadrons. We shall consider both one-loop and two-loop running options.
The value of ↵

s

(m
Z

) will be determined from LEP data in section ??.

3.3 One-Loop Matching for Born + 1 Parton

sPS: Emphasize choice between full and partial unitarity, similarly to at LO level? We choose to stick
to full unitarity, at least for the time being.

The approximation to the 3-parton exclusive rate produced by a shower matched to (at least) NLO
for the 2-parton inclusive rate and to LO for the 3-parton one, is
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where M0
1 is the tree-level Z ! qgq̄ matrix element and Q

R1 denotes the “restart scale”. For strong
ordering, Q

R1 is equal to Q1, while, for smooth ordering, it is given by the nested antenna phase spaces.
The subscripts on the two Sudakov factors �2 and �3 make it explicit that they refer to the event as a
whole, see the illustration in fig. 6. Again, we have the choice whether we wish to work in 4 dimensions,
with a non-zero hadronization scale, Qhad, or in d dimensions with the hadronization scale taken to zero.
For correctness, we have maintained the hadronization scale in eq. (55), though we shall see below that
the dependence on it does indeed cancel in the final result.

The 2-parton Sudakov factor, �2, is generated by the (matched) evolution from 2 to 3 partons,
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2

1

d�ant g
2
s

2C
F

A
g/qq̄

+O(↵2
s

) , (56)

with A
g/qq̄

again defined by eq. (48) (we have added explicit subscripts now to differentiate it from the
qg and gq̄ antenna functions that will presently be introduced). Notice that the integral only runs from
the starting scale, m2

Z

, to the 3-parton resolution scale, Q2
1, hence this integral is IR finite, though it does

contain logarithms. In the remainder of this paper, we shall work only with the leading-color part of the

20

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at Q = Qhad
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).

Sudakov and matrix-element expressions, hence from now on we replace 2C
F

in the above expression
by C

A

,

�

LC
2 (m2

Z

, Q2
1) = 1�

Z
m
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Z

Q
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1

d�ant g
2
s

C
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A
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+O(↵2
s

) . (57)

The 3-parton Sudakov factor, �3, imposes exclusivity and is given by

�3(m
2
Z

, Q2
had) = 1�

2X
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Z
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2
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2
s

�
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�
+O(↵2

s

) , (58)

where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is instead min(Q2
1, sj),

�3(Q
2
1, Q

2
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2X

j=1

Z min(Q2

1

,s

j

)

Q

2

had

d�ant g
2
s

�
C
A

A
g/qg

+ 2T
R

A
q̄/qg

�
+O(↵2

s

) . (59)

However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2

s

) to those present in the fixed-order calculation.
On the fixed-order side, the expression for the 3-parton exclusive rate is simply

Exact ! |M0
1 |2 + 2Re[M0

1M
1⇤
1 ] +

Z
Q

2

had

0

d�2

d�1
|M0

2 |2 , (60)
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Master Equation
NLO Correction: Subtract and correct by difference

5

for Z ! 3 Jets,
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, (72)

where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =

p
s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
C

and another
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Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)



P.  S k a n d s

Loop Corrections

6

(MC)2 : NLO Z → 2 → 3 Jets + Markov Shower
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Choice of QEvol
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D.2 GGG antennae with µR = p?
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Figure 8: GGG antenna, µ
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T

and ↵
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= 0.12, gluon splitting in m
qq
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y
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jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
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> y
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branch, y
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should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y
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, y
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), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to

9

mD

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)
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D.7 MAX antennae with µR = p?
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Figure 13: Maximal antenna, µ
R

= p
T

and ↵
s

= 0.12, gluon splitting in m
qq
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D.6 MIN antennae with µR = p?

0.5

0.6

0.7

0.8

0.9
0.95

1.05

1.1

1.11.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

1.75

1.75

2

2

-8 -6 -4 -2 0
-8

-6

-4

-2

0

lnHyijL

ln
Hy jkL

QE=mD

(a)

1.05

1.1

1.1
-8 -6 -4 -2 0

-8

-6

-4

-2

0

lnHyijL

ln
Hy jkL

QE=2pT HstrongL

(b)

1.1

1.2

1.3

1.3

-8 -6 -4 -2 0
-8

-6

-4

-2

0

lnHyijL

ln
Hy jkL

QE=2pT HsmoothL

(c)

Figure 12: Minimal antenna, µ
R

= p
T

and ↵
s

= 0.12, gluon splitting in m
qq
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Choice of Finite Terms

9

Large finite terms
→ Small 3→4 Sudakov 
(much Sudakov Suppr)

Parameters: αS(MZ) = 0.12, µR = pTA, ΛQCD = ΛCMW

Small finite terms
→ Large 3→4 Sudakov
(little Sudakov Suppr) 

MIN Antennae:
δA3→4 < 0

MAX Antennae:
δA3→4 > 0

Note: this just for illustration. Matching to 
LO matrix elements fixes δA uniquely

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)



O u t l o o k

1. Publish 3 papers (~ a couple of months: helicities, NLO multileg, 
ISR)

2. Apply these corrections to a broader class of processes, 
including ISR → LHC phenomenology

3. Automate correction procedure, via interfaces to one-loop 
codes … (goes slightly beyond Binoth Accord; for LO corrections, 
we currently use own interface to modified MadGraph ME’s)

4. Variations. No calculation is more precise than the reliability of its 
uncertainty estimate → aim for full assessment of TH uncertainties. 

5. Recycle formalism for all-orders shower corrections?
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Phase Space Contours
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

All three options are available as ordering variables in the VINCIA shower Monte Carlo. They are
illustrated in fig. 2, where contours of constant value of y

E

= Q2
E

/s
ijk

are shown for each variable, as
a function of y

ij

and y
jk

. For completeness, we show both the case of a linear (top row) and quadratic
(bottom row) dependence on the branching invariants, for each variable. Since the ordering variable
raised to any positive power will result in the same relative ordering of emissions within a given antenna,
the distinction between linear and quadratic forms does not affect individual antenna Sudakov factors.
It does, however, affect the “competition” between different antennae, and the choice of restart scale for
subsequent evolution after a branching has taken place, as will be discussed further below.

In labeling the columns in fig. 2, we have also emphasized that mass-ordering, as defined here, corre-
sponds to choosing the smallest of the daughter antenna masses as the “resolution scale” of the branch-
ing, whereas p? and energy correspond to using the geometric and arithmetic means of the daughter
invariants, respectively. Naively, each of these could be taken as a plausible measure of the resolution

9

Evolution Variables:
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Consequences of Ordering
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Figure 3: Illustration of the regions of 3-parton phase space in which the subsequent evolution of the
qg and gq̄ antennae is restricted (from above) by the strong-ordering condition. See the text for further
clarification of this plot. Black: both antennae restricted. Dark Gray: one antenna restricted, the other
unrestricted. Light Gray: both antennae unrestricted. Top/Bottom: Q2 linear/quadratic in the branching
invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right).

the phase-space that would otherwise be accessible, and the case in which the strong-ordering condition
does not imply such a constraint.

The regions of qq̄ ! qgq̄ phase space in which either zero, one, or both of the daughter antennae
(qg and gq̄ respectively) are constrained by the ordering condition are illustrated in fig. 3, for each of
the choices of evolution variable under consideration. The black shaded areas correspond to regions in
which both the qg and gq̄ antennae are restricted, by having m

j

< Q. The darker gray shaded areas
show regions in which only one of the antennae is restricted, while the other will still be allowed to
evolve over its full phase space. In the light-gray shaded areas, both of the antennae are allowed to
evolve over all of their available physical phase space, equivalent to the ordering condition imposing no
constraint on the subsequent evolution. We recall that we are here discussing the upper boundary on the
subsequent evolution, hence the IR poles are not affected.

To clarify these plots further, let us discuss panel (e) in fig. 3 as an example. The y
ij

, y
jk

variables
parametrize the 3-parton state before it evolves to a 4-parton state. Given a choice of y

ij

and y
jk

one can
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Idea: 
Start from quasi-conformal all-orders structure (approximate)
Impose exact higher orders as finite corrections 
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events → can be hadronized

Problems: 
Traditional parton showers are history-dependent (non-Markovian)
→ Number of generated terms grows like 2N N!
+ Highly complicated expansions

Solution: (MC)2 : Monte-Carlo Markov Chain
Markovian Antenna Showers (VINCIA)
→ Number of generated terms grows like N
+ extremely simple expansions

Solut ion: (MC)2

14

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
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Fixed Order: Recap
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P. Skands Introduction to QCD
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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Next-to-Leading Order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)
Improve by computing quantum 
corrections, order by order

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389


P.  S k a n d s

Fixed Order: Recap

16

P. Skands Introduction to QCD

F @ LO

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Max Born,
1882-1970
Nobel 1954

F + 2 @ LO

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .
LO for F + 2

! 1 for F + 1

! 1 for F + 0

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).
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will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).
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will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
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(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,
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made up of two dipole “ends”, hence the antenna formalism tends to generate somewhat fewer
terms. At NLO, however, there is no fundamental incompatibility — the antennae we use here
can always be partitioned into two dipole ends, if so desired. (Note: only the antenna method
has been successfully generalized to NNLO [57, 58]. Other NNLO techniques, not covered
here, are sector decomposition, see [59, 60], and the generic formalism for hadroproduction of
colorless states presented in [61].)

At NLO, the idea with subtraction is thus to rewrite the NLO cross section by adding and
subtracting a simple function, d�S , that encapsulates all the IR limits,

�NLO
= �Born

+

Z
d�F+1

⇣
|M(0)

F+1|2 � d�NLO
S

⌘

| {z }
Finite by Universality

+

Z
d�F 2Re[M(1)

F M(0)⇤
F ] +

Z
d�F+1 d�NLO

S

| {z }
Finite by KLN

. (42)

The task now is to construct a suitable form for d�S . A main requirement is that it should be
sufficiently simple that the integral in the last term can be done analytically, in dimensional
regularization, so that the IR poles it generates can be canceled against those from the loop
term.

To build a set of universal terms that parametrize the IR singularities of any amplitude, we
start from the observation that gauge theory amplitudes factorize in the soft limit, as follows:

|MF+1(. . . , i, j, k, . . .)|2 jg!0! g2s NC

 
2sik

sijsjk
� 2m2

i

s2ij
� 2m2

k

s2jk

!
|MF (. . . , i, k, . . .)|2 ,(43)

where parton j is a soft gluon, partons i, j, and k form a chain of color-space index contractions
(we say they are color-connected), gs is the strong coupling, and the terms in parenthesis are
called the soft eikonal factor. We here show it including mass corrections, which appear if i
and k have non-zero rest masses, with the invariants sab then defined as

sab ⌘ 2pa · pb = (pa + pb)
2 � m2

a � m2
b . (44)

The color factor, NC , is valid for the leading-color contribution, regardless of whether the
i and k partons are quarks or gluons. At subleading color, an additional soft-eikonal factor
identical to the one above but with a color factor proportional to �1/NC arises for each qq̄
pair combination. This, e.g., modifies the effective color factor for qq̄ ! qgq̄ from NC to
NC(1� 1/NC) = 2CF , in agreement with the color factor for quarks being CF rather than CA.

Similarly, amplitudes also factorize in the collinear limit (partons i and j parallel, so
sij ! 0), in which the eikonal factor above is replaced by the famous Altarelli-Parisi splitting
kernels [34], which were already mentioned in section 2.2, in the context of PDF evolution.
They are also the basis of conventional parton-shower models, such as those in PYTHIA [62].
We return to parton showers in section 3.2.

Essentially, what antenna functions, CS dipoles, and the like, all do, is to combine the soft
(eikonal) and collinear (Altarelli-Parisi) limits into one universal set of functions that achieve
the correct limiting behavior for both soft and collinear radiation. To give an explicit example,
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(will return to later)
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HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12, 40], PYTHIA6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
VINCIA)

aIK + aHI aIK

Sector Dipole-Antenna (LP [41], VINCIA) ΘIKaIK +ΘHIaHI aIK

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],
PYTHIA8 [38], SHERPA)

aI,K + aI,H aI,K + aK,I

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity
of the IK pair, respectively, originate in different shower types. (ΘI and ΘK represent angular vetos
with respect to partons I andK , respectively, and ΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2 on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifying z as
the Lorentz invariant energy fraction taken by the quark, z = xi/(xi + xk), and adding the radiation
from the antiquark, q̄K → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional parton showers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipole singularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of parton I , and the full soft singularity of
the IK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel, P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at the LL level. (The kernel P (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between the IK pair must be
obtained by summing the radiation functions of partons I andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with no so-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-

9
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⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 �2 �2 1 1 0 0 2 0 0
+� ! ++� 1 0 �2 0 1 0 0 0 0 0
+� ! +�� 1 �2 0 1 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 �↵+ 1 0 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �2 �3 1 3 0 �1 3 0 0
+� ! ++� 1 0 �3 0 3 0 �1 0 0 0
+� ! +�� 1 �2 �↵+ 1 1 2↵� 2 0 0 0 0 0
gg ! ggg
++ ! +++ 1 �↵+ 1 �↵+ 1 2↵� 2 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �3 �3 3 3 �1 �1 3 1 1
+� ! ++� 1 �↵+ 1 �3 2↵� 2 3 0 �1 0 0 0
+� ! +�� 1 �3 �↵+ 1 3 2↵� 2 �1 0 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1
2 0 0 0

++ ! +�+ 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! ++� 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! +�� 0 0 0 0 0 0 1
2 0 0 0

gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1

2 0 0 0
++ ! +�+ 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! ++� 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! +�+ 0 0 0 0 0 0 1

2 0 0 0

Table 2: Table of coefficients for helicity-dependent global antenna functions. By the C and P invariance
of QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. The parameter ↵
determines the form of the spin-summed global antennae. The default choice in VINCIA is ↵ = 0 which
corresponds to the GGG spin-summed antennae. The finite terms are chosen so that the antennae are positive
on all of final state phase space.



P.  S k a n d s

Sector Antennae

19

prescription for the choice of non-singular terms for the sector antennae is to add only the minimal
terms necessary. For antennae whose singular terms are positive on all of phase space, we choose
to set the non-singular terms to 0. For those antennae which require the addition of non-singular
terms for positivity, we choose to add constants where possible and only include higher order terms
in yij and yjk if necessary for simplicity. An example of the construction of sector antennae from its
collinear limits and positivity is given in appendix C and the coefficients of the terms in the sector
antennae are given in tab. 4.

To estimate shower uncertainties due to the ambiguous choice of non-singular terms, we define a
set of MIN and MAX antenna functions, as in the global shower case. The procedure for defining the
sector MIN and MAX antennae is the same as that in the global case. We choose to set the MIN and
MAX antennae for the same helicity configuration to have the same non-singular terms in the sector
case as in the global case.

In the VINCIA code, the sector antennae are derived from the global antennae. Note from tab. 2
and tab. 4 that much of the structure of the sector antennae is captured by the global antennae if ↵ = 1.
To construct a sector antenna, the corresponding global antenna with the same helicity and flavor
structure is evaluated with ↵ = 1 and the missing terms added to recover the full sector antenna. The
precise relationship between the sector (āsct) and global (āgl) antennae for ↵ = 1 for gluon emission
is:

āsct
j/IK(yij , yjk) = ā

gl
j/IK(yij , yjk) + �Ig�HKHk

(
�HIHi�HIHj

 
1 + yjk + y2jk

yij

!

+ �HIHj

 
1

yij(1� yjk)
� 1 + yjk + y2jk

yij

!)

+ �Kg�HIHi

(
�HIHj�HKHk

 
1 + yij + y2ij

yjk

!

+ �HKHj

 
1

yjk(1� yij)
� 1 + yij + y2ij

yjk

!)
.

Here, �Ig is one if I is a gluon and zero otherwise and �HiHj is one if the helicity of particles i and j
are the same and zero otherwise. For antennae with gluons splitting to quarks, the sector antennae are
twice the global antennae.

3 The Shower and Matching Algorithm

PS: Not many changes here. We need to explain how VINCIA has been expanded, with new structures
encapsulating helicity-dependent functions. In the trial-and-veto algorithm itself, not much changes,
but we should of course make clear which trial functions are used for which antennae.

JJ: introduced plot fig. 1

• Trial generation: unchanged (using unpolarized trial functions), for both sector and global,
respectively.

• Find spin-summed physical antenna. Given mother helicities, you sum over daughter helicities.
In sector case, this is the full (three-term) sector antenna, and the accept probability is the full
sector antenna / sum over trial pieces. Use this to determine kinematics (branching invariants +
phase space mapping).
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Figure 4: Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using transverse
momentum to discriminate between sectors [17].

functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.

3.1 Singularity Structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in parton-shower
event generators, gluons are viewed as composed of a triplet and an antitriplet color charge, which are
part of two separate color dipoles. For instance, in a qgq̄ configuration, there will be one color dipole
stretched between the qg pair and one stretched between the gq̄ pair. The full collinear singularity of
the gluon is obtained by summing over the two. In the global antenna approach, radiation from both
pairs is allowed to contribute over all of phase-space. In the sector approach, either the qg pair or the
gq̄ one contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce the
same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
terminology of our conventions,

asct
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= agl

g/qq̄

. (9)

In the qg ! qgg (or gq̄ ! ggq̄) case, there is the collinear limit on the edge of the parent gluon to
be dealt with. In this limit there is a mapping z ! 1 � z between the antenna and its neighboring
antenna. A single global antenna thus compares to the full g ! gg splitting function in the collinear
limit as follows [39],
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functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.

3.1 Singularity Structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in parton-shower
event generators, gluons are viewed as composed of a triplet and an antitriplet color charge, which are
part of two separate color dipoles. For instance, in a qgq̄ configuration, there will be one color dipole
stretched between the qg pair and one stretched between the gq̄ pair. The full collinear singularity of
the gluon is obtained by summing over the two. In the global antenna approach, radiation from both
pairs is allowed to contribute over all of phase-space. In the sector approach, either the qg pair or the
gq̄ one contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce the
same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
terminology of our conventions,
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In the qg ! qgg (or gq̄ ! ggq̄) case, there is the collinear limit on the edge of the parent gluon to
be dealt with. In this limit there is a mapping z ! 1 � z between the antenna and its neighboring
antenna. A single global antenna thus compares to the full g ! gg splitting function in the collinear
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In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last → 
proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms( ~ +

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced
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Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 054003 
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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S T RO N G  O R D E R I N G

Q: How well do showers do?
Exp: Compare to data. Difficult to interpret; all-orders cocktail including 

hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log10(PS/ME)
(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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2→4

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z ⇥ 5 and Z ⇥ 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z ⇥ qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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addition, a few other minor points will need to be clarified. Notably, power-correction ambiguities aris-
ing from perturbative differences in the hadronization region (always present in any perturbative calcu-
lation, but important if one wants to retrieve “exactly” the matrix-element answer, for instance for cross-
check purposes), the impact of unordered sequences of radiation that can occur for the smooth-ordering
case (one possibility may be to adopt a strategy similar to the truncated showers of the MC@NLO
approach), and the mutually related issues of total normalization and how much of the (hard) correc-
tions are exponentiated (similar to the differences between the POWHEG and MC@NLO formalisms,
but here occurring at one additional order, where the total normalization that would be relevant is the
NNLO one). Obviously, the extension of the formalism to hadron collisions is also a necessary prereq-
uisite for it to be interesting for LHC phenomenology. We look forward to following up on these issues
in the near future.
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B One-Loop Amplitudes

B.1 Renormalization

Since a detailed derivation of the calculation of Z ! 3 jets can be found in [10] we restrict ourselves
to listing the result in a, for our purpose, convenient form. Divergences are regulated using dimensional
regularization with d = 4 � 2✏. Our results, before ultraviolet renormalization, are cross-checked
with [10] where one must undo the renormalization in their case. Now in order to cancel the ultraviolet
poles we need to renormalize the coupling according to
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the collinear coefficient K. In a colour-ordered decomposition, these are

β0 = b0N + b0,F NF with b0 =
11

6
, b0,F = −1

3
(4.21)

and

K = k0N + k0,F NF with k0 =
67

18
− π2

6
, k0,F = −5

9
. (4.22)

5. Quark-antiquark antennae

The quark-antiquark antenna functions are derived by appropriately normalising the colour-

ordered QCD real radiation corrections to γ∗ → qq̄, described to NNLO accuracy in [44].

The overall normalisation is given by defining the tree-level two-parton quark-antiquark

antenna function

A0
2(s12) ≡ 1 . (5.1)

The one-loop two-parton quark-antiquark antenna is then:
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5.1 Three-parton tree-level antenna functions

The tree-level three-parton quark-antiquark antenna is:
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yielding the integrated antenna function according to (2.11):
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operators. To extract the remaining finite contribution, we introduce

Finite(X ) ≡ X − Poles(X ) .

Generally,

X = Poles(X ) + Finite(X ) + O(ε). (3.1)

The one-loop antenna functions contain explicit poles from the loop integration. There-

fore, the operators Poles and Finite can also be applied to their unintegrated forms X.

The action of these operators is again to decompose the unintegrated antenna in terms of

infrared singularity operators describing the pole terms and a finite remainder.

All antenna functions are derived from physical matrix elements: the quark-antiquark

antenna functions from γ∗ → qq̄ + (partons) [44], the quark-gluon antenna functions from

χ̃ → g̃ + (partons) [46] and the gluon-gluon antenna functions from H → (partons) [47].

The tree-level antenna functions are obtained by normalising the colour-ordered three- and

four-parton tree-level squared matrix elements to the squared matrix element for the basic

two-parton process,

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2

,

X0
ijl = Sijkl,IL

|M0
ijkl|2

|M0
IL|2

, (3.2)

where S denotes the symmetry factor associated to the antenna, which accounts both for

potential identical particle symmetries and for the presence of more than one antenna

in the basic two-parton process. The one-loop antenna functions are obtained from the

colour-ordered renormalised one-loop three-parton matrix elements as

X1
ijk = Sijk,IK

|M1
ijk|2

|M0
IK |2

− X0
ijk

|M1
IK |2

|M0
IK |2

. (3.3)

The numerical implementation of the three- and four-parton antenna phase space [25]

requires the partonic emissions to be ordered. Ordering of emissions means that the two

hard radiator partons defining the antenna are identified, and that each unresolved par-

ton can become singular only with the two particles which are adjacent to it, i.e. with

the two radiators for three-parton antenna functions and with one radiator and with the

other unresolved parton for the four-parton antenna functions. For the sake of numeri-

cal implementation, this implies two requirements: (1) the separation of multiple antenna

configurations present in a single antenna function for three- and four-parton antenna func-

tions and (2) the separation of non-ordered emissions (present only at subleading colour

in the four-parton antenna functions) into terms that can be identified with a particular

ordering of the momenta.

In the colour-ordered quark-gluon and gluon-gluon antenna functions derived from

physical matrix elements for neutralino decay [46] and Higgs boson decay [47], it is in

general not possible to identify the hard radiators and the unresolved partons in a unique

manner. The reason for this ambiguity is in the cyclic nature of the colour orderings, which

– 25 –

For the analytic integration, we can use (2.8) to rewrite each of the subtraction terms

in the form,

|Mm|2 J (m)
m dΦm

∫
dΦXijk

X0
ijk,

where |Mm|2, J (m)
m and dΦm depend only on p1, , . . . , p̃I , p̃K , . . . , pm+1 and dΦXijk

and X0
ijk

depend only on pi, pj , pk. The analytic integral of the subtraction term is therefore defined

as the antenna function integrated over the fully inclusive antenna phase space, normalised

appropriately,

X 0
ijk(sijk) =

(
8π2 (4π)−ε eεγ

) ∫
dΦXijk

X0
ijk. (2.11)

This integration is performed analytically in d dimensions to make the infrared singu-

larities explicit and added directly to the one-loop m-particle contributions. The factor(
8π2 (4π)−ε eεγ

)
in the above equation is related to the normalisation of the renormalised

coupling constant, and its relation to the bare coupling parameter g =
√

4πα0 appearing

in the QCD Lagrangian density:

α0µ
2ε
0 Sε = αsµ

2ε

[
1 − β0

ε

(αs

2π

)
+

(
β2

0

ε2
− β1

2ε

)(αs

2π

)2
+ O(α3

s)

]
, (2.12)

where

Sε = (4π)εe−εγ with Euler constant γ = 0.5772 . . .

and µ2
0 is the mass parameter introduced in dimensional regularisation to maintain a di-

mensionless coupling in the bare QCD Lagrangian density; β0 and β1 are the first two

coefficients of the QCD β-function:

β0 =
11N − 2NF

6
, β1 =

34N3 − 13N2NF + 3NF

12N
, (2.13)

with N = 3 colours and NF massless quark flavours.

2.2 NNLO infrared subtraction terms

At NNLO, the m-jet production is induced by final states containing up to (m+2) partons,

including the one-loop virtual corrections to (m + 1)-parton final states. As at NLO, one

has to introduce subtraction terms for the (m + 1)- and (m + 2)-parton contributions.

Schematically the NNLO m-jet cross section reads,

dσNNLO =

∫

dΦm+2

(
dσR

NNLO − dσS
NNLO

)
+

∫

dΦm+2

dσS
NNLO

+

∫

dΦm+1

(
dσV,1

NNLO − dσV S,1
NNLO

)
+

∫

dΦm+1

dσV S,1
NNLO

+

∫

dΦm

dσV,2
NNLO , (2.14)

where dσS
NNLO denotes the real radiation subtraction term coinciding with the (m + 2)-

parton tree level cross section dσR
NNLO in all singular limits. Likewise, dσV S,1

NNLO is the

one-loop virtual subtraction term coinciding with the one-loop (m+1)-parton cross section

dσV,1
NNLO in all singular limits. Finally, the two-loop correction to the m-parton cross section

is denoted by dσV,2
NNLO.

– 9 –
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D.3 GGG antennae with µR = mD
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Figure 9: GGG antenna, µ
R

= m
D

and ↵
s

= 0.12 and gluon splitting is m
qq

.

45

The choice of evolution variable (Q)
Variation with µR  = mD = 2 min(sij,sjk)

Parameters: αS(MZ) = 0.12, ΛQCD = ΛCMW


