REVERSE UNITARITY AND THRESHOLD EXPANSIONS Babis Anastasiou

Babis Anastasiou ETH Zurich

MOTIVATION

• Drell-Yan production of lepton pairs

- Our sanity check at hadron colliders

- W mass and electroweak couplings, parton densities,...
- Higgs production

Major indicator of new physicsImportant for Higgs coupling extractions

- 1% and 8% precision of NNLO calculations.
- Do we believe these uncertainties? YES, but let's make sure NNNLO

EXISTING NNLO METHODS

- Pioneering work by van Neerven et al in Drell-Yan.
 - computing the inclusive cross-section in the soft limit $z \equiv \frac{M_V^2}{\hat{s}} \rightarrow 1$. - followed by complete calculation for arbitrary partonic energy.
- Additional techniques for Higgs production
 - Soft limit (Catani, de Florian, Grazzini; Harlander, Kilgore)

- Systematic method for threshold expansion and resuming of the series (Harlander,Kilgore)

$$\hat{\sigma}_{RR} = (1-z)^{-1-4\epsilon} \left[a_1 + a_2(1-z) + a_3(1-z)^2 + \dots \right]$$

$$\hat{\sigma}_{RV} = (1-z)^{-1-4\epsilon} \left[b_1 + b_2(1-z) + b_3(1-z)^2 + \dots \right] + (1-z)^{-1-2\epsilon} \left[c_1 + c_2(1-z) + c_3(1-z)^2 + \dots \right]$$

REVERSE UNITARITY

Melnikov, CA

Convert phase-space integrals into loop integrals.

$$\delta\left(p^2-M^2
ight)
ightarrow rac{i}{p^2-M^2} rac{-c.c.}{{}_{can \; almost}}$$
 forget about it

• Use IBP identities and the Laporta algorithm to reduce phase-space integrals into master integrals

$$\int d^d k \frac{\partial}{\partial k_{\mu}} \frac{q^{\mu}}{k^2 \dots} = 0 \rightsquigarrow I_1 + I_2 + \dots = 0$$

• Simplification for cut propagators.

$$\left(\frac{i}{k^2}\right)^n \to 0, \quad n = 0, -1, 2, \dots$$

• Few remaining master integrals. Solved using differential equations, derived and solved in the same way as for loop master integrals (Kotikov; Gehrmann, Remiddi, Smirnov, Veretin, ...)

REVERSE UNITARITY

Melnikov, CA

- Solving the differential equations of the master integrals requires a boundary condition: SOFT LIMIT
- 18 double real-radiation master integrals

• 7 real-virtual master integrals

FROM NNLO TO NNNLO

	NLO	NNLO	NNNLO
topologies	1	11	215
master integrals per topology	1	~5	~25
total number of master integrals	1	18	~1000
	integrations over real radiation tree-level graphs		

• Sheer magnitude of such a calculation is frightening

• But, we can hope in sharpening our methods

IN THIS TALK

- Threshold series expansion with the "reverse unitarity" method

 z =1 limit is extremely useful as a first step towards a complete calculation
 necessary boundary condition for solving master integral differential
 equations
 - important contribution to the cross-section
- The method allows for a systematic expansion around the soft limit, acquiring as many terms in the series as computer power permits us to do so.
- Enormous simplification permitting the use of IBP identities directly in the soft limit.

THE NLO REAL RADIATION FXAMPI F

Consider the NLO real radiation topology:

$$I[\nu_1, \nu_2] = \int d^d k \frac{\delta\left((p_{12} - k)^2 - M_V^2\right)\delta\left(k^2\right)}{\left[(k - p_1)^2\right]^{\nu_1}\left[(k - p_2)^2\right]^{\nu_2}}$$

vo-scale integral

$$\nu_1, \nu_2 = \dots, -2, -1, 0, 1, 2, \dots$$

Scaling of the gluon momentum:

$$k = \overline{z} \quad l, \quad \overline{z} \equiv 1 - z = 1 \frac{M_V^2}{\hat{s}}$$

(no approximation made)

$$\nu_{1}, \nu_{2}] = \bar{z}^{1-\nu_{12}-2\epsilon} I_{reg} [\nu_{1}, \nu_{2}] \qquad I_{reg} [\nu_{1}, \nu_{2}] = \int d^{d}l \frac{\delta \left((l-p_{12})^{2} \right) \delta \left(l^{2} \right)}{\left[(l-p_{1})^{2} \right]^{\nu_{1}} \left[(l-p_{2})^{2} \right]^{\nu_{2}}}$$
exponent X divergent
$$= LOGS$$
one-scale integral

Ι

one-scale integral

THE NLO REAL RADIATION EXAMPLE

$$I_{reg}\left[\nu_{1},\nu_{2}\right] = \int d^{d}l \frac{\delta\left((l-p_{12})^{2}\right)\delta\left(l^{2}\right)}{\left[(l-p_{1})^{2}\right]^{\nu_{1}}\left[(l-p_{2})^{2}\right]^{\nu_{2}}}$$

Trivial to perform the integration over the rescaled momentum. But, let's resist the temptation.

$$(l-p_1)^2 + (l-p_2)^2 = (l-p_{12})^2 + l^2 - p_{12}^2 \rightsquigarrow$$

Double cut of one-loop form factor integrals

$$\delta\left(l^{2}\right), \delta\left(\left(l-p_{12}\right)^{2}\right) \rightarrow \frac{i}{l^{2}}, \frac{i}{\left(l-p_{12}\right)^{2}} \quad \gamma$$

REVERSE UNITARITY:

One master integral: two massless particle phase-space measure

FIRST LESSONS

- Rescaling of gluon momenta which captures their behavior in the soft limit leads to phase-space integrals which depend only on a single kinematic scale (at NLO).
- Reverse unitarity and integration by parts minimize the amount of integrations (down to one integral).
- Calculation is almost entirely algebraic (=algorithmic).

MULTIPLE REAL EMISSION

 $I = \int d^{d}q_{1} \dots d^{d}q_{N} \delta(q_{1}^{2}) \dots \delta(q_{N}^{2}) \delta\left((p_{12} - q_{12\dots N})^{2} - M_{V}^{2}\right) \left|\mathcal{M}^{2}\right|^{2}$

reverse unitarity

$$I = \int \frac{d^{d}q_{1} \dots d^{d}q_{N}}{q_{1}^{2} \dots q_{N}^{2} \left((p_{12} - q_{12\dots N})^{2} - M_{V}^{2} \right)} \left| \mathcal{M}^{2} \right|^{2}$$

SCALING: $q_i \rightarrow \bar{z}q_i$

(no approximation made yet)

$$I = \bar{z}^{N(d-2)-1} \int \frac{d^d q_1 \dots d^d q_N}{q_1^2 \dots q_N^2 \left((p_{12} - q_{12} \dots N)^2 - z q_{12}^2 \dots N \right)} \left| \mathcal{M} \right|^2 \left(\bar{z} q_i, p_1, p_2 \right)$$

Correct asymptotic behavior

New integral depends on z. But it is regular at z=1. Can be expanded INSIDE the integration sign.

MULTIPLE REAL RADIATION

Taylor expanding the integrand:

• Integrals of sub-leading terms reduce to the same master integrals as the ones making up the strict soft limit!

• Computing more terms in the series expansion is an algebraic problem

• no new master integrals emerge.

DOUBLE REAL RADIATION AT NNLO

- 18 master integrals for a generic value of z.
- Two master integrals for the expansion around the soft limit:

• Recall the master integrals for the two-loop form factor:

• They are of similar nature (coincide in the ''wrong'' limit z=0).

TRIPLE REAL RADIATION AT NNNLO

- Looked at some of the 215 topologies which appear at NNNLO.
- A verified example of a topology is shown here.
- 23 master integrals for generic z.
- These collapse to one very simple master integral, the phasespace measure, when expanding around threshold.

- Total number of master integrals
 - \sim master integrals for the three-loop form factor with a quadruple cut (< 10).

WORK IN HAPPY PROGRESS

- · Identifying and reducing to master integrals all triple real-radiation topologies
- Further steps:

extend this method to combinations of real and virtual radiation
 requires scalings of loop-momenta in the soft limit and it is conceptually harder.

- success for real-virtual master integrals at NNLO (Dulat, Mistlberger)

- a lot more inventiveness is needed for RVV and RRV at NNNLO, but we hope to get guidance from the two-loop master integral computations for Higgs+I jet production (*Gehrmann,Remiddi*)

• Watch this space (but no promises :))