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MOTIVATION

 Drell-Yan production of lepton pairs

- Our sanity check at hadron colliders
- W mass and electroweak couplings, parton densities,...

 Higgs production

- Major Indicator of new physics
- Important for Higgs coupling extractions

1% and 8% precision of NNLO calculations.

* Do we believe these uncertainties! YES, but let's make sure NINNLO



EXISTING NNLO METHODS

Pioneering work by van Neerven et al in Drell-Yan.
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- computing the Inclusive cross-section In the soft lmit 2= % L,
- followed by complete calculation for arbitrary partonic energy.

Additional techniques for Higgs production

- Soft limit (Catani, de Florian, Grazzini; Harlander,Kilgore)
- Systematic method for threshold expansion and resuming of the series
(l—lar/ander,Ki/gore)
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elnikov, CA

« Convert phase-space integrals into loop integrals.
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forget about it

« Use IBP identities and the Laporta algorithm to reduce phase-space integrals into master integrals
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Simplification for cut propagators.
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« Few remaining master integrals. Solved using differential equations, derived and solved in the same way

as for loop master integrals (Kotikov; Gehrmann, Remiddi, Smirnov, Veretin, ...)



REVERSE UNITARITY

Melnikov, CA

* Solving the differential equations of the master integrals requires a boundary
condrtion: SOFT LIMIT

* |8 double real-radiation master integrals
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* / real-virtual master integrals
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FROM NNLO TO NNNLO
1 1 215

1

topologies

master integrals
per topology

total number of 1
master integrals

1

integrations over real radiation
tree-level graphs

* Sheer magnitude of such a calculation is frightening
* But, we can hope in sharpening our methods



IN THIS TALK

* [hreshold series expansion with the “reverse unitarity’” method

-z =1 limit is extremely useful as a first step towards a complete calculation
- necessary boundary condition for solving master integral differential
eqguations

- important contribution to the cross-section

* The method allows for a systematic expansion around the soft limit,

acquiring as many terms in the series as computer power permits us to
do so.

* Enormous simplification permitting the use of IBP identities directly in the
soft imit.



THE NLO REAL RADIATION
EXAMPLE

Consider the NLO real radiation topology:
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THE NLO REAL RADIATION

EXAMPLE
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Trivial to perform the integration over the rescaled momentum.

But, let’s resist the temptation.
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Double cut of one-loop form
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two massless particle phase-
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FIRST LESSONS

» Rescaling of gluon momenta which captures their behavior In
the soft limit leads to phase-space integrals which depend only
on a single kinematic scale (at NLO).

* Reverse unitarity and integration by parts minimize the
amount of Integrations (down to one integral).

» Calculation 1s almost entirely algebraic (=algorithmic).



MULTIPLE REAL EMISSION
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New integral depends on z. But it is regular at z=1.
Can be expanded INSIDE the integration sign.



MULTIPLE REAL RADIATION

aylor expanding the integrand:
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MASTERS

* ntegrals of sub-leading terms reduce to the same master integrals as the
ones making up the strict soft limit!
e Computing more terms Iin the series expansion Is an algebraic problem

®no new master integrals emerge.



DOUBLE REAL RADIATION AT
NNLO

» |8 master integrals for a generic value of z.

» [wo master integrals for the expansion around the soft limit:
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» Recall the master integrals for the two-loop form factor:
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* They are of similar nature (coincide in the “wrong’ limit z=0).



TRIPLE REAL RADIATION AT
NNNLO
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g;l_.-é__'_}}) * Looked at some of the 215 topologies which appear at NNNLO.
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A verified example of a topology Is shown here.
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¥ * 23 master integrals for generic z.

- * These collapse to one very simple master integral, the phase-
/C : space measure, when expanding around threshold.
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» Jotal number of master integrals

~ master integrals for the three-loop form factor with a
quadruple cut (< 10).



WORK IN HAPPY PROGRESS

» |dentifying and reducing to master integrals all triple real-radiation topologies

S RUIEINER steps:
- extend this method to combinations of real and virtual radiation

- requires scalings of loop-momenta In the soft limit and 1t Is

conceptually harder.

- success for real-virtual master integrals at NNLO
(Dulat, Mistlberger)
- a lot more inventiveness is needed for RVV and RRV at NNNLO,

but we hope to get guidance from the two-loop master integral
computations for Higgs+ | jet production (Gehrmann,Remiddi)

» Watch this space (but no promises :) )



