REVERSE UNITARITY AND
 THRESHOLD EXPANSIONS Babis Anastasiou
 ETH Zurich

MOTIVATION

- Drell-Yan production of lepton pairs
- Our sanity check at hadron colliders
- W mass and electroweak couplings, parton densities,...
- Higgs production
- Major indicator of new physics
- Important for Higgs coupling extractions
- 1% and 8% precision of NNLO calculations.
- Do we believe these uncertainties? YES, but let's make sure NNNLO

EXISTING NNLO METHODS

- Pioneering work by van Neerven et al in Drell-Yan.
- computing the inclusive cross-section in the soft limit $z \equiv \frac{M_{V}^{2}}{s} \rightarrow 1$.
- followed by complete calculation for arbitrary partonic energy.
- Additional techniques for Higgs production
- Soft limit (Catani, de Florian, Grazzini; Harlander,Kilgore)
- Systematic method for threshold expansion and resuming of the series (Harlander,Kilgore)

$$
\begin{aligned}
\hat{\sigma}_{R R} & =(1-z)^{-1-4 \epsilon}\left[a_{1}+a_{2}(1-z)+a_{3}(1-z)^{2}+\ldots\right] \\
\hat{\sigma}_{R V} & =(1-z)^{-1-4 \epsilon}\left[b_{1}+b_{2}(1-z)+b_{3}(1-z)^{2}+\ldots\right] \\
& +(1-z)^{-1-2 \epsilon}\left[c_{1}+c_{2}(1-z)+c_{3}(1-z)^{2}+\ldots\right]
\end{aligned}
$$

REVERSE UNITARITY
 Melnikov, CA

- Convert phase-space integrals into loop integrals.

$$
\delta\left(p^{2}-M^{2}\right) \rightarrow \frac{i}{p^{2}-M^{2}}-\text { c.c. almost } .
$$

- Use IBP identities and the Laporta algorithm to reduce phase-space integrals into master integrals

$$
\int d^{d} k \frac{\partial}{\partial k_{\mu}} \frac{q^{\mu}}{k^{2} \ldots}=0 \rightsquigarrow I_{1}+I_{2}+\ldots=0
$$

- Simplification for cut propagators.

$$
\left(\frac{i}{\not / 2}\right)^{n} \rightarrow 0, \quad n=0,-1,2, \ldots
$$

- Few remaining master integrals. Solved using differential equations, derived and solved in the same way as for loop master integrals (Kotikov; Gehrmann, Remiddi, Smirnov, Veretin, ...)

REVERSE UNITARITY
 Melnikov, CA

- Solving the differential equations of the master integrals requires a boundary condition: SOFT LIMIT
- 18 double real-radiation master integrals

- 7 real-virtual master integrals

FROM NNLOTO NNNLO

NLO NNLO NNNLO

topologies
master integrals per topology
total number of master integrals

215

$$
\sim 25
$$

$18 \sim 1000$
integrations over real radiation tree-level graphs

- Sheer magnitude of such a calculation is frightening
- But, we can hope in sharpening our methods

INTHISTALK

- Threshold series expansion with the "reverse unitarity" method $-\mathrm{z}=1$ limit is extremely useful as a first step towards a complete calculation - necessary boundary condition for solving master integral differential equations
- important contribution to the cross-section
- The method allows for a systematic expansion around the soft limit, acquiring as many terms in the series as computer power permits us to do so.
- Enormous simplification permitting the use of IBP identities directly in the soft limit.

THE NLO REAL RADIATION EXAMPLE

Consider the NLO real radiation topology:

$$
I\left[\nu_{1}, \nu_{2}\right]=\int d^{d} k \frac{\delta\left(\left(p_{12}-k\right)^{2}-M_{V}^{2}\right) \delta\left(k^{2}\right)}{\left[\left(k-p_{1}\right)^{2}\right]^{\nu_{1}}\left[\left(k-p_{2}\right)^{2}\right]^{\nu_{2}}}
$$

two-scale
integral

$$
\nu_{1}, \nu_{2}=\ldots,-2,-1,0,1,2, \ldots
$$

Scaling of the gluon momentum: $k=\bar{z} \quad l, \quad \bar{z} \equiv 1-z=1 \frac{M_{V}^{2}}{\hat{s}}$
(no approximation made)

$$
\begin{array}{cc}
I\left[\nu_{1}, \nu_{2}\right]=\bar{z}^{1-\nu_{12}-2 \epsilon} I_{\text {reg }}\left[\nu_{1}, \nu_{2}\right] & I_{\text {reg }}\left[\nu_{1}, \nu_{2}\right]=\int d^{d} l \frac{\delta\left(\left(l-p_{12}\right)^{2}\right) \delta\left(l^{2}\right)}{\left[\left(l-p_{1}\right)^{2}\right]^{\nu_{1}}\left[\left(l-p_{2}\right)^{2}\right]^{\nu_{2}}} \\
\text { exponent X divergent } & \text { one-scale integral } \\
=\text { LOGS }
\end{array}
$$

THE NL REAL RADIATION EXAMPLE
 $$
I_{\text {reg }}\left[\nu_{1}, \nu_{2}\right]=\int d^{d} l \frac{\delta\left(\left(l-p_{12}\right)^{2}\right) \delta\left(l^{2}\right)}{\left[\left(l-p_{1}\right)^{2}\right]^{\nu_{1}}\left[\left(l-p_{2}\right)^{2}\right]^{\nu_{2}}}
$$

Trivial to perform the integration over the rescaled momentum. But, let's resist the temptation.

$$
\left(l-p_{1}\right)^{2}+\left(l-p_{2}\right)^{2}=\left(l-/ p_{12}\right)^{2}+\eta^{2}-p_{12}^{2} \rightsquigarrow\left[\frac{1}{5}+\cdots\right]
$$

Double cut of one-loop form factor integrals
REVERSE UNITARITY:

FIRST LESSONS

- Rescaling of gluon momenta which captures their behavior in the soft limit leads to phase-space integrals which depend only on a single kinematic scale (at NLO).
- Reverse unitarity and integration by parts minimize the amount of integrations (down to one integral).
- Calculation is almost entirely algebraic (=algorithmic).

MULTIPLE REAL EMISSION

SCALING: $\quad q_{i} \rightarrow \bar{z} q_{i} \quad$ (no approximation made yet)

$$
I=\bar{z}^{N(d-2)-1} \int \frac{d^{d} q_{1} \ldots d^{d} q_{N}}{q_{j}^{2} \ldots q_{N}^{2}\left(\left(p_{12}-q_{12 \ldots N} \gamma^{\gamma}-z q_{12 \ldots N}^{2}\right)\right.}|\mathcal{M}|^{2}\left(\bar{z} q_{i}, p_{1}, p_{2}\right)
$$

MULTIPLE REAL RADIATION

Taylor expanding the integrand:

$$
I=\bar{z}^{2 N \epsilon-1}\left[I_{\mathrm{reg}}^{(0)}+I_{\mathrm{reg}}^{(1)} \bar{z}+I_{\mathrm{reg}}^{(2)} \bar{z}^{2}+\ldots\right]
$$

- Integrals of sub-leading terms reduce to the same master integrals as the ones making up the strict soft limit!
- Computing more terms in the series expansion is an algebraic problem
- no new master integrals emerge.

DOUBLE REAL RADIATION AT NNLO

- 18 master integrals for a generic value of z.
- Two master integrals for the expansion around the soft limit:

$$
\left.\cdots \frac{1}{\left(p_{12}-k+c\right)^{2}-z(k+l)^{2}}\right|_{z=1}
$$

- Recall the master integrals for the two-loop form factor:

- They are of similar nature (coincide in the "wrong" limit $\mathbf{z =}=0$).

TRIPLE REAL RADIATION AT NNNLO

- Looked at some of the 215 topologies which appear at NNNLO.
- A verified example of a topology is shown here.
- 23 master integrals for generic z.
- These collapse to one very simple master integral, the phasespace measure, when expanding around threshold.

- Total number of master integrals
~ master integrals for the three-loop form factor with a quadruple cut (<10).

WORK IN HAPPY PROGRESS

- Identifying and reducing to master integrals all triple real-radiation topologies
- Further steps:
- extend this method to combinations of real and virtual radiation
- requires scalings of loop-momenta in the soft limit and it is conceptually harder.
- success for real-virtual master integrals at NNLO
(Dulat, Mistberger)
- a lot more inventiveness is needed for RVV and RRV at NNNLO,
but we hope to get guidance from the two-loop master integral computations for Higgs+ I jet production (Gehrmann,Remiddi)
- Watch this space (but no promises :))

