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The	  idea	  of	  merging	  is	  to	  calculate	  exclusive	  cross-‐sec3ons	  and	  
combine	  them	  to	  form	  an	  inclusive	  sample

2	  jets 3	  jets 4	  jets

For	  example,	  inclusive	  hadronic	  cross	  sec9on	  at	  e+e-‐	  can	  
be	  separated	  into	  individual	  jet	  cross-‐sec9ons

Many	  ways	  to	  define	  jets	  but	  all	  need	  resolu9on	  μjet

For	  μjet≪Q	  (αs	  Log2(μjet/Q)	  ∼	  1)	  needs	  LL	  resumma9on	  
(This	  is	  main	  point	  of	  CKKW	  paper)

What	  happens	  if	  we	  try	  to	  extend	  to	  NLO?



A	  simple	  setup	  using	  thrust	  illustrates	  all	  the	  important	  features

1. Choose	  thrust	  as	  the	  jet	  resolu9on	  variable	  (τ	  =	  1-‐T)
τ	  <	  τcut	  ⇒	  2	  jets,	  τ	  >	  τcut	  ⇒	  3+	  jets

2. Imagine	  we	  only	  ever	  measure	  thrust	  on	  3+	  jet	  
dσ/dτ	  =	  ∫dΦ3	  	  dσ3/dΦ3	  	  δ[	  τ-‐τ(Φ3)	  ]cross-section can therefore be written as
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while the perturbative series of the thrust spectrum is schematically

d�incl
3

d⌧
⇠ ↵s


L

⌧
+

1

⌧
+ �(⌧) + 1

�
+ ↵2

s


L3

⌧
+

L2

⌧
+

L

⌧
+

1

⌧
+ �(⌧) + 1

�
+ . . . (1.4)

Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved

– 3 –

PT	  expressions	  for	  both	  terms	  contain	  large	  logarithms	  
Lcut = Log(τcut)           L	  =	  Log(τ)          

Form	  of	  these	  logarithms	  well	  known



The	  structure	  of	  the	  large	  logarithms	  follows	  a	  well	  known	  
paHern
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For	  exclusive	  2-‐jet	  rate

For	  inclusive	  3-‐jet	  rate

LL	  resumma9on	  [all	  terms	  (αs	  L2cut)n	  ]	  needed	  if
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The	  structure	  of	  the	  large	  logarithms	  follows	  a	  well	  known	  
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Some	  defini9ons	  I	  will	  use
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With	  this	  nota3on,	  can	  illustrate	  what	  other	  approaches	  are	  
doing

LO	  accuracy	  for	  both	  σincl	  and	  dσ3incl

order calculations with a parton shower, but as we have discussed in the introduction, this

is identical to merging fixed order calculations of di↵erent jet multiplicity with each other,

where one ensures that the parton shower can not change the jet multiplicities. In this

section, we will present the di↵erent approaches using the thrust distribution introduced in

the introduction. This will hopefully help to understand our notation and allows us to present

the di↵erences in the simplest way, without introducing additional notation required to make

the distributions fully exclusive.

The seminal work by Catani-Krauss-Kuhn-Webber (CKKW) chooses fixed order accuracy

at LO, together with a resummation at LL. To this order, the cumulant and spectrum can

be written as
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where we have used that the logarithmic derivative of the Sudakov factor, which we call the

“splitting function”, reproduces the leading singularity of the thrust spectrum. Thus, the

correction are at most of order ↵sL.

Going beyond leading order accuracy requires to modify the logarithmic structure as well

to ensure that the inclusive cross section is correctly reproduced. The Powheg approach for

our example would choose
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Thus, the “splitting function” is chosen to be equal to the full LO distribution. The NLO

rate is given by the well known relation
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cross-section can therefore be written as
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The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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3
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Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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With	  this	  nota3on,	  can	  illustrate	  what	  other	  approaches	  are	  
doing
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Inclusive	  cross-‐sec9on	  gives
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form

�2(⌧
cut) ⇠ 1 + ↵s(L

2
cut + Lcut + 1) + ↵2

s(L
4
cut + L3

cut + L2
cut + Lcut + 1) + . . . (1.3)

while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are

1 + ↵s(L
2
cut + Lcut + 1) + ↵n

sL
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cut (1.6)

The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives

Z
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2
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4
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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With	  this	  nota3on,	  can	  illustrate	  what	  other	  approaches	  are	  
doing

MC@NLO	  prescrip9on

NLO	  accuracy	  for	  σincl,	  LO	  accuracy	  for	  dσ3incl

Inclusive	  cross-‐sec9on	  gives

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by
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Z ⌧cut
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with no higher order corrections.

The MC@NLO approach on the other hand chooses

�2(⌧
cut) = e�NLO�(1, ⌧ cut) ,
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(2.7)

where �̃NLO is given by

�NLO = �LO + �V + �LO

Z 1

0
d⌧

d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
1��(1, ⌧ cut)

⇤
+

Z ⌧cut
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form
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2
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s(L
4
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are

1 + ↵s(L
2
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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With	  this	  nota3on,	  can	  illustrate	  what	  other	  approaches	  are	  
doing

Modified	  MC@NLO	  prescrip9on

NLO	  accuracy	  for	  σincl,	  LO	  accuracy	  for	  dσ3incl

Inclusive	  cross-‐sec9on	  gives

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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cut) = e�NLO�(1, ⌧ cut) ,
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where �̃NLO is given by

�NLO = �LO + �V + �LO

Z 1

0
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d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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requires LL resummation, which resums all terms of order ↵n
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cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
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2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives

Z
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2
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s(L
4
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +

Z ⌧cut

0
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with no higher order corrections.

The MC@NLO approach on the other hand chooses

�2(⌧
cut) = e�NLO�(1, ⌧ cut) ,
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d⌧
= e�NLO d

d⌧
�(1, ⌧ cut) +
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(2.7)

where �̃NLO is given by

�NLO = �LO + �V + �LO

Z 1

0
d⌧

d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
1��(1, ⌧ cut)

⇤
+

Z ⌧cut
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by
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There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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cut) +
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The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically

d�incl
3

d⌧
⇠ ↵s


L

⌧
+

1

⌧
+ �(⌧) + 1

�
+ ↵2

s


L3

⌧
+

L2

⌧
+

L

⌧
+

1

⌧
+ �(⌧) + 1

�
+ . . . (1.4)

Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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requires LL resummation, which resums all terms of order ↵n
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cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
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2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives

Z
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d�incl
3

d⌧
✓(⌧ > ⌧ cut) ⇠ ↵s(L
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved

– 3 –

With	  this	  nota3on,	  can	  illustrate	  what	  other	  approaches	  are	  
doing

New	  NLO	  merging	  procedure

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +

Z ⌧cut
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�(1, ⌧)
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1� e�(1, ⌧ cut)

i

= �NLO , (2.6)

with no higher order corrections.

The MC@NLO approach on the other hand chooses

�2(⌧
cut) = e�NLO�(1, ⌧ cut) ,
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d⌧
= e�NLO d

d⌧
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� �LOd log�(1, ⌧ cut)
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(2.7)

where �̃NLO is given by

�NLO = �LO + �V + �LO

Z 1

0
d⌧

d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
1��(1, ⌧ cut)

⇤
+

Z ⌧cut
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
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cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
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2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
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3
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cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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doing
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Large	  logarithms	  spoil	  NLO	  accuracy	  for	  σincl
Need	  very	  carefully	  defined	  P(τ)	  (higher	  log	  resumma9on)

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by
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There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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All	  exis9ng	  approaches	  sum	  logarithms	  
at	  LL	  accuracy

Higher	  logarithmic	  resumma9on	  is	  
important	  in	  its	  own	  right,	  but	  also	  
needed	  to	  combine	  NLO	  calcula9ons
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cross-section can therefore be written as
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved

– 3 –

The	  structure	  of	  the	  large	  logarithms	  follows	  a	  well	  known	  
paHern
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In
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cross-section can therefore be written as
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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s(L

3
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cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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Nota3on	  for	  logarithmic	  accuracy

cross-section can therefore be written as
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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GENEVA	  approach
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Everything	  I	  said	  previously	  easily	  generalizes	  to	  fully	  inclusive	  
events

Method Accuracy Desired Accuracy Achieved

�incl d�/d⌧N C(⌧ cN ) �incl d�/d⌧N C(⌧ cN )

CKKW LO LO LO LO LO LO

Powheg, MC@NLO NLO LO NLO NLO LO LO

Lei↵, Sherpa NLO NLO NLO LO NLO LO

NLL’ resummation NLO NLO NLO NLO NLO NLO

Table 1. Comparison of desired and achieved accuracy for di↵erent approaches to combining di↵erent
multiplicities. In red we show where a given approach does not achieve the desired accuracy if we
treat ↵s log

2 ⌧ cN ⇠ 1. As mentioned in the text, the goal of the Powheg and MC@NLO approach was
only to reproduce the inclusive rate and the spectrum for ⌧N ⇠ 1, so they achieve their goal. For
the existing attempts to merge two NLO calculations, however, not even the inclusive cross-section is
reproduced correctly.

3 Combining two fully di↵erential cross sections

In the introduction we described our method of combining an exclusive 2-jet rate (defined with

⌧ < ⌧ cut) with the inclusive thrust spectrum, and the main result was given in Eq. (B.22). We

showed that in order to have both the inclusive thrust spectrum and the total inclusive cross-

section correct to NLO requires resummation of both the cumulant and the di↵erential thrust

spectrum beyond LL accuracy. In this section we will generalize this result such that the

exclusive 2-jet rate is fully di↵erential in �2, while the inclusive 3-jet rate is fully di↵erential

in �3.

In order to be fully di↵erential in the 2- and 3-bdoy phase space, we write the general-

ization of Eq. (1.2) as

d�incl =
d�2(⌧ cut)

�2
d�2 +

d�incl
3

d�3
✓
�
⌧(�3) > ⌧ cut

�
d�3 (3.1)

The two four-vectors defining the phase space point �2 in the first term on the right hand side

are chosen to be massless vectors with energy
p
s/2, with the the three-momentum aligned

and anti-aligned with the thrust axis. The three four-vectors defining �3 in the second term

are chosen to be as light-like, with the three momentum aligned with the three jet directions

reconstructed in some jet algorithm. Clearly, both of the terms on the right hand side can

be calculated in fixed order perturbation theory, and we denote these terms as before by a

superscript F.

The resummed expressions for the first term can be calculated in a straightforward man-

ner, since the resummation is independent of �2. For the second term, we want to resum

the logarithms which get large in the limit ⌧ ! 0. These logarithms can be resummed in a

straightforward manner by considering the di↵erential distribution d�3/d⌧d�2. We choose

�2 to again be identified by massless four-vectors aligned and anti-aligned with the thrust

direction, while ⌧ denotes the actual thrust of the event. In general, the precise definition of

�2 depends on a phase space mapping from �3 which is obtained by combining two particles
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For	  2	  different	  jet	  mul9plici9es	  can	  write

For	  more	  jets,	  write
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Using	  same	  trick	  as	  	  before,	  can	  derive	  expressions	  
for	  each	  term	  that	  is	  correct	  to	  given	  fixed	  order	  

and	  given	  resummed	  order



Need	  to	  go	  to	  at	  least	  NLL’	  (two	  orders	  
more	  that	  LL)	  in	  resumma9on	  to	  be	  able	  

to	  merge	  two	  NLO	  calcula9ons

Can	  not	  rely	  on	  Sudakov	  factors	  any	  
more,	  but	  need	  honest	  resumma9on

GENEVA	  allows	  to	  do	  precisely	  that:	  
combine	  fixed	  order	  resumma9on	  with	  

higher	  log	  resumma9on


