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The	
  idea	
  of	
  merging	
  is	
  to	
  calculate	
  exclusive	
  cross-­‐sec3ons	
  and	
  
combine	
  them	
  to	
  form	
  an	
  inclusive	
  sample

2	
  jets 3	
  jets 4	
  jets

For	
  example,	
  inclusive	
  hadronic	
  cross	
  sec9on	
  at	
  e+e-­‐	
  can	
  
be	
  separated	
  into	
  individual	
  jet	
  cross-­‐sec9ons

Many	
  ways	
  to	
  define	
  jets	
  but	
  all	
  need	
  resolu9on	
  μjet

For	
  μjet≪Q	
  (αs	
  Log2(μjet/Q)	
  ∼	
  1)	
  needs	
  LL	
  resumma9on	
  
(This	
  is	
  main	
  point	
  of	
  CKKW	
  paper)

What	
  happens	
  if	
  we	
  try	
  to	
  extend	
  to	
  NLO?



A	
  simple	
  setup	
  using	
  thrust	
  illustrates	
  all	
  the	
  important	
  features

1. Choose	
  thrust	
  as	
  the	
  jet	
  resolu9on	
  variable	
  (τ	
  =	
  1-­‐T)
τ	
  <	
  τcut	
  ⇒	
  2	
  jets,	
  τ	
  >	
  τcut	
  ⇒	
  3+	
  jets

2. Imagine	
  we	
  only	
  ever	
  measure	
  thrust	
  on	
  3+	
  jet	
  
dσ/dτ	
  =	
  ∫dΦ3	
  	
  dσ3/dΦ3	
  	
  δ[	
  τ-­‐τ(Φ3)	
  ]cross-section can therefore be written as
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The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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2
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved

– 3 –

PT	
  expressions	
  for	
  both	
  terms	
  contain	
  large	
  logarithms	
  
Lcut = Log(τcut)           L	
  =	
  Log(τ)          

Form	
  of	
  these	
  logarithms	
  well	
  known



The	
  structure	
  of	
  the	
  large	
  logarithms	
  follows	
  a	
  well	
  known	
  
paHern
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For	
  exclusive	
  2-­‐jet	
  rate

For	
  inclusive	
  3-­‐jet	
  rate

LL	
  resumma9on	
  [all	
  terms	
  (αs	
  L2cut)n	
  ]	
  needed	
  if
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The	
  structure	
  of	
  the	
  large	
  logarithms	
  follows	
  a	
  well	
  known	
  
paHern

Some	
  defini9ons	
  I	
  will	
  use
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order calculations with a parton shower, but as we have discussed in the introduction, this

is identical to merging fixed order calculations of di↵erent jet multiplicity with each other,

where one ensures that the parton shower can not change the jet multiplicities. In this

section, we will present the di↵erent approaches using the thrust distribution introduced in

the introduction. This will hopefully help to understand our notation and allows us to present

the di↵erences in the simplest way, without introducing additional notation required to make

the distributions fully exclusive.

The seminal work by Catani-Krauss-Kuhn-Webber (CKKW) chooses fixed order accuracy

at LO, together with a resummation at LL. To this order, the cumulant and spectrum can

be written as

�2(⌧
cut) = �LO�(1, ⌧ cut) ,
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3
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=

d�LO
3
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= �LO +O(↵sL) , (2.2)

where we have used that the logarithmic derivative of the Sudakov factor, which we call the

“splitting function”, reproduces the leading singularity of the thrust spectrum. Thus, the

correction are at most of order ↵sL.

Going beyond leading order accuracy requires to modify the logarithmic structure as well

to ensure that the inclusive cross section is correctly reproduced. The Powheg approach for

our example would choose

�2(⌧
cut) = �NLO e�(1, ⌧ cut) ,

d�incl
3
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=
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where the Sudakov factor e�(1, ⌧) is defined by
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=

1

�LO

d�LO
3

d⌧
. (2.4)

Thus, the “splitting function” is chosen to be equal to the full LO distribution. The NLO

rate is given by the well known relation

�NLO = �LO + �V +

Z 1

0
d⌧

d�LO
3

d⌧
(2.5)
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cross-section can therefore be written as
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cut) +
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✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form
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2
cut + Lcut + 1) + ↵2

s(L
4
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are

1 + ↵s(L
2
cut + Lcut + 1) + ↵n

sL
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form

�2(⌧
cut) ⇠ 1 + ↵s(L

2
cut + Lcut + 1) + ↵2

s(L
4
cut + L3

cut + L2
cut + Lcut + 1) + . . . (1.3)

while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are

1 + ↵s(L
2
cut + Lcut + 1) + ↵n

sL
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cut (1.6)

The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives

Z
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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With	
  this	
  nota3on,	
  can	
  illustrate	
  what	
  other	
  approaches	
  are	
  
doing

MC@NLO	
  prescrip9on

NLO	
  accuracy	
  for	
  σincl,	
  LO	
  accuracy	
  for	
  dσ3incl

Inclusive	
  cross-­‐sec9on	
  gives

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by

�NLO = �LO + �V + �LO

Z 1

0
d⌧

d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
1��(1, ⌧ cut)

⇤
+

Z ⌧cut
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form
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cut) ⇠ 1 + ↵s(L

2
cut + Lcut + 1) + ↵2

s(L
4
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cut + Lcut + 1) + . . . (1.3)

while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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Inclusive	
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  gives

where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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cut) = e�NLO�(1, ⌧ cut) ,
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where �̃NLO is given by

�NLO = �LO + �V + �LO
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d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by
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Z 1

0
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d log�(1, ⌧ cut)

d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as

�incl = �2(⌧
cut) +

Z
d⌧

d�incl
3

d⌧
✓(⌧ > ⌧ cut) (1.2)

The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
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sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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cut) +
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The perturbative series of the exclusive cross-section has the form
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2
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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The terms included in the di↵erential thrust distribution are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by

�incl = �NLO e�(1, ⌧ cut) +
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by
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d⌧
. (2.8)

There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section

�incl = e�NLO�(1, ⌧ cut) + e�NLO
⇥
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Z ⌧cut

0
d⌧


d�LO

3

d⌧
� d log�(1, ⌧ cut)

d⌧

�

= �NLO +

Z ⌧cut

0
d⌧


d�LO

3

d⌧
� d log�(1, ⌧ cut)

d⌧

�
(2.9)

The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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cross-section can therefore be written as
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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requires LL resummation, which resums all terms of order ↵n
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cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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where �V denotes the virtual contributions to the total rate. The careful definition of the

Sudakov factor in Eq. (2.4) ensures that the inclusive cross-section is given by
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with no higher order corrections.

The MC@NLO approach on the other hand chooses
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where �̃NLO is given by
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There is one important condition, namely that the ”splitting function” reproduces the singular

behavior of the thrust spectrum as ⌧ ! 0. For general MC@NLO implementations this

condition can cause problems. For more details on this issue, see [? ]. Combining these two

results, one finds for the inclusive cross-section
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The final term is power suppressed.

There are two approaches in the literature that have attempted to merge multiple NLO

calculations with a parton shower. While both of these correctly reproduce the exclusive cross

sections to NLO, they use regular Sudakov factors to perform the logarithmic resummation.

This implies that the inclusive cross section contains ”corrections” with logarithmic scale

↵2
sL

3 which is in fact larger than the NLO correction included. (TODO) TODO: Need to

write the

equations
The main problem with combining several NLO calculations is not to obtain the fixed

order expression, but rather to improve the logarithmic resummation. All existing approaches

have used LL Sudakov factors to obtain the resummed expressions. While this was good

enough if only only cares about NLO accuracy of a single inclusive observables, this is not

su�cient for combining multiple inclusive NLO calculations or in regions of phase space that

include large kinematic logarithms. In this paper we propose a method that combines the

fixed order expressions at NLO with higher logarithmic resummation, such that the inclusive

cross section is not spoilt by large logarithmic terms. This also provides the first method

to combine resummations at higher logarithmic accuracy with a parton shower, which as

mentioned above has not been achieved so far.

A summary of the di↵erent approaches is given in Table 2.
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling
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requires LL resummation, which resums all terms of order ↵n
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cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
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2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved

– 3 –
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cross-section can therefore be written as
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The perturbative series of the exclusive cross-section has the form
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while the perturbative series of the thrust spectrum is schematically
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Here we have defined Lcut = log ⌧ cut and L = log ⌧ . The commonly used scaling

↵sL
2
cut ⇠ 1 (1.5)

requires LL resummation, which resums all terms of order ↵n
sL

2n
cut in the exclusive 2-jet cross-

section, and all terms of order ↵n
sL

2n�1/⌧ in the spectrum.

Now consider the case where one wants both the di↵erential thrust spectrum and the

inclusive rate to be correct to NLO accuracy (including all terms up to ↵2
s in the spectrum

and all terms up to ↵s in the rate). This of course requires the exclusive 2-jet rate to be

correct to NLO as well. If one would only perform the resummation of the large logarithms

at LL, the terms included in the exclusive 2-jet rate are
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Thus, the integral over this distribution between ⌧ cut and 1 gives
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result

�incl = 1 + ↵s + ↵2
s(L

3
cut + L2

cut + Lcut + 1) (1.9)

Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive

rate, however one introduces NNLO terms that are enhanced by three powers of Lcut. Using

the scaling given in Eq. (1.5) which demanded LL resummation in the first place, one easily

sees that these formally NNLO terms are in fact larger than the NLO terms included. In

fact, one needs to remove the terms with scaling ↵2
sL

3
cut and ↵2

sL
2
cut to have a well behaved
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By summing the two terms together the logarithms included in both terms cancel, such that

one finds the final schematic result
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Thus, to fixed order in perturbation theory one gets the correct NLO result for the inclusive
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Everything	
  I	
  said	
  previously	
  easily	
  generalizes	
  to	
  fully	
  inclusive	
  
events

Method Accuracy Desired Accuracy Achieved

�incl d�/d⌧N C(⌧ cN ) �incl d�/d⌧N C(⌧ cN )

CKKW LO LO LO LO LO LO

Powheg, MC@NLO NLO LO NLO NLO LO LO

Lei↵, Sherpa NLO NLO NLO LO NLO LO

NLL’ resummation NLO NLO NLO NLO NLO NLO

Table 1. Comparison of desired and achieved accuracy for di↵erent approaches to combining di↵erent
multiplicities. In red we show where a given approach does not achieve the desired accuracy if we
treat ↵s log

2 ⌧ cN ⇠ 1. As mentioned in the text, the goal of the Powheg and MC@NLO approach was
only to reproduce the inclusive rate and the spectrum for ⌧N ⇠ 1, so they achieve their goal. For
the existing attempts to merge two NLO calculations, however, not even the inclusive cross-section is
reproduced correctly.

3 Combining two fully di↵erential cross sections

In the introduction we described our method of combining an exclusive 2-jet rate (defined with

⌧ < ⌧ cut) with the inclusive thrust spectrum, and the main result was given in Eq. (B.22). We

showed that in order to have both the inclusive thrust spectrum and the total inclusive cross-

section correct to NLO requires resummation of both the cumulant and the di↵erential thrust

spectrum beyond LL accuracy. In this section we will generalize this result such that the

exclusive 2-jet rate is fully di↵erential in �2, while the inclusive 3-jet rate is fully di↵erential

in �3.

In order to be fully di↵erential in the 2- and 3-bdoy phase space, we write the general-

ization of Eq. (1.2) as

d�incl =
d�2(⌧ cut)

�2
d�2 +

d�incl
3

d�3
✓
�
⌧(�3) > ⌧ cut

�
d�3 (3.1)

The two four-vectors defining the phase space point �2 in the first term on the right hand side

are chosen to be massless vectors with energy
p
s/2, with the the three-momentum aligned

and anti-aligned with the thrust axis. The three four-vectors defining �3 in the second term

are chosen to be as light-like, with the three momentum aligned with the three jet directions

reconstructed in some jet algorithm. Clearly, both of the terms on the right hand side can

be calculated in fixed order perturbation theory, and we denote these terms as before by a

superscript F.

The resummed expressions for the first term can be calculated in a straightforward man-

ner, since the resummation is independent of �2. For the second term, we want to resum

the logarithms which get large in the limit ⌧ ! 0. These logarithms can be resummed in a

straightforward manner by considering the di↵erential distribution d�3/d⌧d�2. We choose

�2 to again be identified by massless four-vectors aligned and anti-aligned with the thrust

direction, while ⌧ denotes the actual thrust of the event. In general, the precise definition of

�2 depends on a phase space mapping from �3 which is obtained by combining two particles

– 7 –

For	
  2	
  different	
  jet	
  mul9plici9es	
  can	
  write

For	
  more	
  jets,	
  write
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Using	
  same	
  trick	
  as	
  	
  before,	
  can	
  derive	
  expressions	
  
for	
  each	
  term	
  that	
  is	
  correct	
  to	
  given	
  fixed	
  order	
  

and	
  given	
  resummed	
  order



Need	
  to	
  go	
  to	
  at	
  least	
  NLL’	
  (two	
  orders	
  
more	
  that	
  LL)	
  in	
  resumma9on	
  to	
  be	
  able	
  

to	
  merge	
  two	
  NLO	
  calcula9ons

Can	
  not	
  rely	
  on	
  Sudakov	
  factors	
  any	
  
more,	
  but	
  need	
  honest	
  resumma9on

GENEVA	
  allows	
  to	
  do	
  precisely	
  that:	
  
combine	
  fixed	
  order	
  resumma9on	
  with	
  

higher	
  log	
  resumma9on


