
Local subtraction at NNLO
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The message

Q: How to compute NNLO cross sections?

A: Like you always thought you would:

1. Derive all relevant QCD factorization formulae

2. Stare at them and write down approximate cross section(s)

3. Integrate approximate cross section(s) over unresolved emission(s)

The message

This can be done and it works and has nice properties.
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NNLO cross section

The NNLO correction to a generic m-jet cross section

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm

➠ Doubly-real: dσRR
m+2

◮ tree level, m+ 2 parton kinematics
◮ implicit IR poles from PS integration

➠ Real-virtual: dσRV
m+1

◮ one-loop, m + 1 parton kinematics
◮ explicit/implicit IR poles form loop/PS integration

➠ Doubly-virtual: dσVV
m

◮ two-loops, m parton kinematics
◮ explicit IR poles form loop integration

Need to deal with implicit IR poles!
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Basics of subtraction

Stragegy: rearrange IR singularities between various contributions by
subtracting and adding back suitable approximate cross sections

Structure of subtractions: governed by jet functions

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm
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Basics of subtraction

Stragegy: rearrange IR singularities between various contributions by
subtracting and adding back suitable approximate cross sections

Structure of subtractions: governed by jet functions

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2
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Basics of subtraction

Stragegy: rearrange IR singularities between various contributions by
subtracting and adding back suitable approximate cross sections

Structure of subtractions: governed by jet functions

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2
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Basics of subtraction

Stragegy: rearrange IR singularities between various contributions by
subtracting and adding back suitable approximate cross sections

Structure of subtractions: governed by jet functions

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2
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Basics of subtraction

Stragegy: rearrange IR singularities between various contributions by
subtracting and adding back suitable approximate cross sections

Structure of subtractions: governed by jet functions

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫
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dσRV
m+1 +
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RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1

5. (
∫
1
dσ

RR,A1
m+2 )

A1 regularizes the singly-unresolved limit of
∫
1
dσ

RR,A1
m+2
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Basics of local subtraction

Goal: devise a subtraction scheme that is

➠ general: applicable to any process, any observable

➠ explicit: expressions include color, should be possible to implement a
general version

➠ local: all color and spin correlations taken into account, mathematically
rigorous

➠ efficient: option to constrain subtractions to near singular regions, also
important check

Use full squared matrix elements, including color

Construct subtraction terms based on

➠ factorization of squared matrix elements in IR limits as embodied by
standard QCD factorization formulae

➠ exact factorization of phase space via momentum remappings
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Constructing the subtraction terms - I

Factorization of squared matrix elements in IR limits

XR |Mm+p({p}m+p)|
2 ≃ SingR ⊗ |Mm({p}m)|2

➠ XR is a symbolic operator that takes some specific limit R in which p

patrons are unresolved (p = 1, 2 at NNLO)

➠ SingR is the singular factor in this limit (Altarelli-Parisi splitting function,
soft current and generalizations)

Issues

➠ Singular regions overlap in phase space ⇒ matching of limits to avoid
multiple subtraction. E.g. at NLO: collinear + soft - collinear limit of soft

A1|M
(0)
m+1|

2 =
∑

i

[

∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]

|M
(0)
m+1|

2

➠ cumbersome if done in a brute force way, however efficient solution is
known

➠ candidate subtraction terms obtained are only defined in strict IR limits ⇒
extension of IR factorization formulae over full phase space
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Constructing the subtraction terms - II

Factorization of phase space via momentum remapping: {p}m+p
XR−→ {p̃}

(R)
m

➠ implements momentum conservation

➠ p̃ are on-shell

➠ recoil is taken away by whole event

➠ leads to exact factorization of phase space

dφm+p({p}m+p ;Q) = dφm({p̃}
(R)
m ;Q)[dp

(R)
p,m]

Issues

➠ extension of IR limits defined by these mappings must respect delicate
structure of cancellations in all limits. [E.g. counterterms for single
unresolved real radiation (unintegrated and integrated) must have
universal IR limits. This is not guaranteed by QCD factorization.]

➠ different collinear and soft type mappings used

➠ obtained counterterms are hard to integrate over unresolved phase space
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Subtraction terms - general features

Given completely explicitly for any process (with colorless initial state)

Building blocks are IR limit formulae and momentum remappings

➠ Altarelli-Parisi splitting functions, soft currents (tree level and one-loop,
also triple AP functions)

➠ extension away from limits based on momentum mappings that generalize
to any number of unresolved partons

➠ phase space plays no essential role in construction

Fully local in color ⊗ spin space

➠ no need to consider the color decomposition of real emission matrix
elements

➠ azimuthal correlations correctly taken into account in gluon splitting

Straightforward to constrain subtractions to near singular regions

➠ more efficient implementation

➠ independence of physical results on phase space cut is a strong check
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Integrating the subtraction terms - I

Subtraction terms inherit the structure of limit formulae:

XR = SingR ⊗ |Mm({p̃}
(R)
m )|2

➠ XR is the subtraction term corresponding to limit R

➠ it is a product in color and spin space of the factorized matrix element
depending on momenta {p̃}

(R)
m , but independent of [dp

(R)
p,n ]

➠ and the singular factor SingR that depends on variables in [dp
(R)
p,n ]

➠ recall exact phase space factorization

dφm+p({p}m+p ;Q) = dφm({p̃}
(R)
m ;Q)[dp

(R)
p,m]

Integrated subtraction terms computed once and for all

XR =

∫

XR =

(∫

[dp
(R)
p,n ]SingR

)

⊗ |Mm({p}m)|2

➠ explicit parametrization of [dp
(R)
p,n ] ⇒ parametric integral representations

➠ compute the parametric integrals
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Integrating the subtraction terms - II

Computing the integrated subtraction terms is cumbersome

➠ Many (O(100)) difficult higher-dimensional integrals to compute. E.g.

I3C ,5(x ĩrs
, ǫ;α0, d0) = 21−4ǫ Γ2(1− ǫ)

πΓ(1 − 2ǫ)
x
ĩrs

∫ α0

0
dα

∫ 1

0
dtis dτrs dvr dws α

−1−2ǫ

× (1− α)2d0−3+2ǫ(α + (1− α)x
ĩrs

)−1−2ǫ(2α + (1 − α)x
ĩrs

)2t−1−2ǫ
is

(1 − tis)
−2ǫ

× τ−1−ǫ
rs (1− τrs)

−ǫv−ǫ
r (1− vr )

−ǫw
−1/2−ǫ
s (1− ws)

−1/2−ǫ(1− τrs + τrs tis )
2ǫ

× [(1 + tis)α+ (1− α)x
ĩrs

(1 − (1 − tis )vr )]
−1

{

(1− τrs + τrs tis )(2α + (1− α)x
ĩrs

)

+ tis

[

α+ (1 − α)x
ĩrs

[(1− τrs )vr + τrs(1 − vr )− 2
√

τrs (1− τrs)vr (1 − vr )(1− 2ws)]
]}−1

➠ Needed as an ǫ-expansion to O(ǫ0)

I3C ,5(x ĩrs
, ǫ;α0, d0) =

1

4ǫ4
−

ln x
ĩrs

ǫ3
+O(ǫ−2)

rest of the expansion coefficients obtained numerically

➠ Method of computation: sector decomposition (in this case)
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Performing the integrals

Have explored several different methods to compute integrals which arise

➠ use of IBPs to reduce to master integrals + solution of MIs by differential
equations

➠ use of MB representations to extract pole structure + summation of
nested series

➠ use of sector decomposition

Analytical vs. numerical

✘ Complete analytic integration does not seem practical/feasible.

✔ However, whenever available, analytical results show that the integrals are
smooth functions (in the colloquial sense) of kinematical variables.

✔ Hence, for practical purposes, numerical forms are sufficient. E.g. suitable
approximating functions may be obtained by fitting or interpolation.
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Performing the integrals

Method Analytical
M
M

Numerical

IBP

✔ singly-unresolved
integrals

✘ bottleneck is the
proliferation of
denominators

✔ by evaluating the
analytic expressions

✘ no numbers without
full analytical results

MB

✔ iterated singly-
unresolved integrals

✘ bottleneck is the
evaluation of sums

✔ direct numerical
evaluation of MB
integrals possible

✔ fast and accurate

SD

✔ easy to automate

✘ only in principle,
except for lowest
order poles

✘ numerical behavior
is generally worse
than MB method
(speed, accuracy)
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Integrated approximate cross sections

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

Structure

➠ after summing over unobserved flavors, they are products (in color space)
of various insertion operators with lower point cross sections

Insertion operators

➠ color and flavor structure known

➠ first two leading poles known analytically

➠ remaining poles and finite parts to be computed numerically
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Integrated approximate cross sections

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

Structure

➠ after summing over unobserved flavors, they are products (in color space)
of various insertion operators with lower point cross sections

Insertion operators

➠ color and flavor structure known

➠ first two leading poles known analytically

➠ remaining poles and finite parts to be computed numerically

Last missing piece:
∫
2
dσ

RR,A2
m+2
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Integrated doubly-unresolved approximate cross section

∫

2
dσ

RR,A2
m+2 = dσB

m ⊗ I
(0)
2 ({p}m ; ǫ)

➠ structure of insertion operator in color ⊗ flavor space

I
(0)
2 ({p}m ; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2{
∑

i

[

C
(0)
12,fi

T
2
i +

∑

k

C
(0)
2,fi fk

T
2
k

]

T
2
i

+
∑

j,l

[

S
(0),(j,l)
2 CA +

∑

i

CS
(0),(j,l)
2,fi

T
2
i

]

TjTl

+
∑

i,k,j,l

S
(0),(i,k)(j,l)
2 {TiTk ,TjTl}

}

➠ C
(0)
2,fi

, C
(0)
2,fi fk

, S
(0),(j,l)
2 , CS

(0),(j,l)
2,fi

and S
(0),(i,k)(j,l)
2 are functions with ǫ-poles

up to 1/ǫ−4 that depend on event kinematics and also on phase space cut
parameters

➠ kinematical dependence enteres through variables

xi = yiQ ≡
2pi · Q

Q2
and Yik,Q =

yik

yiQykQ
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Integrated doubly-unresolved approximate cross section

∫

2
dσ

RR,A2
m+2 = dσB

m ⊗ I
(0)
2 ({p}m ; ǫ)

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

I
(0)
2 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2{3C2
A
+ 10CACF + 8C2

F

4ǫ4
+

[

77C2
A

24

+
109CACF

12
+ 6C2

F −
CATRnf

2
−

7CFTRnf

3CF

+

(

3C2
A

2
− CACF − 4C2

F

)

ln y12

−
CA(3CA + 4CF)

2
(ln y13 + ln y23)

]

1

ǫ3
+O(ǫ−2)

}

➠ notice x and Y dependence combine to produce just yik dependence, as
expected

➠ remaining expansion coefficients computed numerically
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Status

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

✔ unintegrated RR counterterms

✔ unintegrated RV counterterms

✔ RV counterterms integrated

✔ RR counterterms integrated (numerics is work in progress)

Gábor Somogyi | Local subtraction at NNLO | page 14



Cancellation of IR singularities I - kinematical

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

Cancellation of kinematical singularities for e+e− → 2, 3 jets (m = 2, 3)

➠ in all singly- and doubly-unresolved limits

dσ
RR,A2
m+2 Jm +

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]

dσRR
m+2Jm+2

→ 1

➠ in all singly-unresolved limits

−
∫

1
dσ

RR,A1
m+2 Jm+1 +

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

dσRV
m+1Jm+1

→ 1
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Cancellation of IR singularities II - poles

σNNLO =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

+

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

Cancellation of poles for e+e− → 2, 3 jets (m = 2, 3) up to O(ǫ−2) analytically

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

= O(ǫ−2)

➠ cancellation of PS cut parameter dependence in sum of integrated
approximate cross sections is highly nontrivial: strong check

➠ nontrivial interplay of kinematical dependence in various terms

➠ cancellation of lower order poles to be checked numerically (work in
progress)
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Conclusions and outlook

Local subtraction at NNLO

➠ general, explicit, local subtraction scheme for computing NNLO QCD jet
cross sections

➠ construction based on IR limit formulae

➠ fully worked out for processes with colorless initial state

➠ integration of all approximate cross sections finished

Immediate next steps

➠ consolidate numerics for integrated subtraction terms

➠ physical applications to assess overall performance
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