INTEGRAND REDUCTION FOR MULTIHLOOP SCATTERING AMPLITUDES

PIERPAOLO MASTROLIA

MAX PLANCK INSTITUTE FOR THEORETICAL PHYSICS, MUNICH PHYSICS AND ASTRONOMY DEPT., UNIVERSITY \& INFN, PADOVA

YarXiv: 1107.6041 [hep-ph], JHEP 1111 (2011) 014, with Ossola
\& arXiv:1205.7087 [hep-ph], to appear in PLB, with Ossola, Mirabella \& Peraro
\& arXiv:1209.4319 [hep-ph], with Ossola, Mirabella \& Peraro

CERN, 3.10.2012

MULTI-LOOP INTEGRAND DECOMPOSITION

(] GENERIC AMPLITUDE

$$
\begin{aligned}
\mathcal{A}_{n} & =\int d^{d} \bar{q}_{1} \ldots \int d^{d} \bar{q}_{\ell} \quad \mathcal{I}_{i_{1} \cdots i_{n}}\left(\bar{q}_{1}, \ldots, \bar{q}_{\ell}\right) \\
& \equiv \int d^{d} \bar{q}_{1} \ldots \int d^{d} \bar{q}_{\ell} \frac{\mathcal{N}_{i_{1} \cdots i_{n}}\left(\bar{q}_{1}, \ldots, \bar{q}_{\ell}\right)}{D_{i_{1}}\left(\bar{q}_{1}, \ldots, \bar{q}_{\ell}\right) \cdots D_{i_{n}}\left(\bar{q}_{1}, \ldots, \bar{q}_{\ell}\right)}, \\
D_{i} & =\left(\sum_{a} \alpha_{i, a} \bar{q}_{a}+p_{i}\right)^{2}-m_{i}^{2} \quad \alpha_{i, a} \in\{0, \pm 1\} .
\end{aligned}
$$

MULTI-Loop Integrand Decomposition

[- InTEGRAND REDUCTION FORMULA

$$
\begin{aligned}
\mathcal{N}_{i_{1} \cdots i_{n}}= & \sum_{1=i_{1} \ll i_{\max }}^{n} \Delta_{i_{1} i_{2} \ldots i_{\max }} \prod_{h \neq i_{1} i_{2} \ldots i_{\max }}^{n} D_{h} \sum_{1=i_{1} \ll\left(i_{\max }-1\right)}^{n} \Delta_{i_{1} i_{2} \ldots\left(i_{\max }-1\right)}^{n} \prod_{h \neq i_{1} i_{2} \ldots\left(i_{\max }-1\right)}^{n} D_{h} \\
& +\sum_{1=i_{1} \ll\left(i_{\max }-2\right)}^{n} \Delta_{i_{1} i_{2} \ldots\left(i_{\max }-2\right)}^{\prod_{h \neq i_{1} i_{2} \ldots\left(i_{\max }-2\right)}^{n}} D_{h} \\
& +\quad \ldots \quad \ldots \\
& +\sum_{1=i_{1}<i_{2}}^{n} \Delta_{i_{1} i_{2}}^{n} \prod_{h \neq i_{1} i_{2}}^{n} D_{h} \\
& +\sum_{1=i_{1}}^{n} \Delta_{i_{1}}^{n} \prod_{h \neq i_{1}}^{n} D_{h} \\
& +Q_{\emptyset} \prod_{h=1}^{n} D_{h}
\end{aligned}
$$

(] MULTI-(PARTICLE)-POLE DECOMPOSITION

$$
\begin{aligned}
\mathcal{I}_{i_{1} \cdots i_{n}}= & \frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{n}}} \\
\mathcal{I}_{i_{1} \cdots i_{n}}= & \sum_{1=i_{1} \ll i_{\max }}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }}}+\sum_{1=i_{1} \ll i_{\max }-1}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-1}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-1}} \\
& +\sum_{1=i_{1} \ll i_{\max }-2}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-2}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-2}}+\cdots \cdots+\sum_{1=i_{1}<i_{2}}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}}+Q_{\emptyset}
\end{aligned}
$$

- Parametric form of the residues is process independent.

(V) Parametric form of the residues

Use your favourite generator,
(Feynman diagrams, tree-amplitudes, currents,...), and sample /(q's) as many time as the number of unknown coefficients is process independent.
(I) Actual values of the coefficients is process dependent.

\square Problem: what is the form of the residues?

©"find the right variables encoding the cut-structure"

CUTS AND RESIDUES

8 cut-associated basis

For each cut $(i j k \cdots), D_{i}=D_{j}=D_{k}=\cdots=0$, a basis of four massless vectors

$$
\begin{gathered}
\left\{e_{1}^{(i j k \cdots)}, e_{2}^{(i j k \cdots)}, e_{2}^{(i j k \cdots)}, e_{4}^{(i j k \cdots)}\right\} \\
\left(e_{i}^{(i j k \cdots)}\right)^{2}=0, \quad e_{1}^{(i j k \cdots)} \cdot e_{3}^{(i j k \cdots)}=e_{1}^{(i j k \cdots)} \cdot e_{4}^{(i j k \cdots)}=0, \\
e_{2}^{(i j k \cdots)} \cdot e_{3}^{(i j k \cdots)}=e_{2}^{(i j k \cdots)} \cdot e_{4}^{(i j k \cdots)}=0, \quad e_{1}^{(i j k \cdots)} \cdot e_{2}^{(i j k \cdots)}=-e_{3}^{(i j k \cdots)} \cdot e_{4}^{(i j k \cdots)}=1
\end{gathered}
$$

use independent external momenta + auxiliary orthogonal complement:

$1-1$

4-vectors vs components

- Loop momentum decomposition

$$
q+p_{i}=\sum_{\alpha=1}^{4} x_{\alpha} e_{\alpha}^{(i j k \cdots)}
$$

\square Problem: what is the form of the residues?
Δ-variables

- ISP's = Irreducible Scalar Products:
- components of the loop momenta which can variate under cut-conditions
- spurious: vanishing upon integration
- non-spurious: non-vanishing upon integration \Rightarrow MI's

INTEGRAND-REDUCTION BEYOND ONE-LOOP

Ossola \& P.M. (2011)

Badger, Frellesvig, Zhang $(2011,2012)$
Zhang (2012)
Mirabella, Ossola, Peraro, \& P.M (2012)
Kleiss, Malamos, Papadopoulos, Verheynen (2012)

MULTI-LOOP SCATTERING AMP's from Multivariate Polynomial Division

MULTivariate Polynomial Division

Zhang (2012);
Mirabella, Ossola, Peraro, \& P.M. (2012)

\& Ideal

Groebner Basis
n-ple cut-conditions

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

$$
\mathcal{G}_{i_{1} \cdots i_{n}}=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\}
$$

$$
D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0
$$

MULTIVARIATE POLYNOMIAL DIVISION

Mirabella, Ossola, Peraro, \& P.M. (2012)

Ideal

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

Groebner Basis
n-ple cut-conditions
$\mathcal{G}_{i_{1} \cdots i_{n}}=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\}$
$D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0$

Polynomial Division

$$
\mathcal{N}_{i_{1} \cdots i_{n}}(\mathbf{z})=\Gamma_{i_{1} \cdots i_{n}}+\Delta_{i_{1} \cdots i_{n}}(\mathbf{z}),
$$

\% Remainder $=$ Residue

$$
\Delta_{i_{1} \cdots i_{n}}(\mathbf{z})
$$

Quotients

$$
\begin{aligned}
\Gamma_{i_{1} \cdots i_{n}} & =\sum_{i=1}^{m} \mathcal{Q}_{i}(\mathbf{z}) g_{i}(\mathbf{z}) \quad \text { belongs to the ideal } \mathcal{J}_{i_{1} \cdots i_{n}} \\
& =\sum_{\kappa=1}^{n} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{n}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})
\end{aligned}
$$

MULTI-LOOP RECURSIVE INTEGRAND REDUCTION

Mirabella, Ossola, Peraro, \& P.M. (2012)

RedUcibility CRITERION

Proposition 2.1. The integrand $\mathcal{I}_{i_{1} \cdots i_{n}}$ is reducible iff the remainder of the division modulo a Gröbner basis vanishes, i.e. iff $\mathcal{N}_{i_{1} \cdots i_{n}} \in \mathcal{J}_{i_{1} \cdots i_{n}}$.

RedUcibility CRITERION

Proposition 2.1. The integrand $\mathcal{I}_{i_{1} \cdots i_{n}}$ is reducible iff the remainder of the division modulo a Gröbner basis vanishes, i.e. iff $\mathcal{N}_{i_{1} \cdots i_{n}} \in \mathcal{J}_{i_{1} \cdots i_{n}}$.

Proposition 2.2 An integrand $\mathcal{I}_{i_{1} \cdots i_{n}}$ is reducible if the cut $\left(i_{1} \cdots i_{n}\right)$ leads to a system of equations with no solution.

Indeed if the system of equations $D_{i_{1}}(\mathbf{z})=\cdots=D_{i_{n}}(\mathbf{z})=0$ has no solution, the weak Nullstellensatz theorem ensures that $1 \in \mathcal{J}_{i_{1} \cdots i_{n}}$, i.e. $\mathcal{J}_{i_{1} \cdots i_{n}}=P[\mathbf{z}]$. Therefore any polynomial in \mathbf{z} is in the ideal. Any numerator function $\mathcal{N}_{i_{1} \cdots i_{n}}$ is polynomial in the integration momenta, thus $\mathcal{N}_{i_{1} \cdots i_{n}} \in \mathcal{J}_{i_{1} \cdots i_{n}}$ and it can be expressed as a combination of the denominators $D_{i_{1}}(\mathbf{z}), \ldots, D_{i_{n}}(\mathbf{z})[44,49]$. In this case Eq. (2.8) becomes

$$
\begin{aligned}
& 1=\sum_{\kappa=1}^{n} w_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}) \in \mathcal{J}_{i_{1} \cdots i_{n}}, \quad \text { for some } \omega_{\kappa} \in P[\mathbf{z}] \\
& \mathcal{I}_{i_{1} \cdots i_{n}}=\sum_{\kappa=1}^{n} \mathcal{I}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} i_{n}}
\end{aligned}
$$

ONE-LOOP INTEGRAND REDUCTION

In d-dimensions, the generic n-point one-loop integrand reads

$$
\mathcal{I}_{0 \cdots(n-1)} \equiv \frac{\mathcal{N}_{0 \cdots(n-1)}\left(q, \mu^{2}\right)}{D_{0}\left(q, \mu^{2}\right) \cdots D_{n-1}\left(q, \mu^{2}\right)} .
$$

for each $\mathcal{I}_{i_{1} \cdots i_{k}}$ we define a basis $\mathcal{E}^{\left(i_{1} \cdots i_{k}\right)}=\left\{e_{i}\right\}_{i=1, \ldots, 4}$.
If $k \geq 5$, then $e_{i}=k_{i}$, where k_{i} are four external momenta. If $k<5$, then e_{i} are chosen to fulfill the following relations:

$$
\begin{array}{ll}
e_{1}^{2}=e_{2}^{2}=0, & e_{1} \cdot e_{2}=1, \\
e_{3}^{2}=e_{4}^{2}=\delta_{k 4}, & e_{3} \cdot e_{4}=-\left(1-\delta_{k 4}\right) .
\end{array}
$$

In terms of $\mathcal{E}^{\left(i_{1} \cdots i_{k}\right)}$, the loop momentum can be decomposed as, $\quad q^{\mu}=-p_{i_{1}}^{\mu}+x_{1} e_{1}^{\mu}+x_{2} e_{2}^{\mu}+x_{3} e_{3}^{\mu}+x_{4} e_{4}^{\mu}$.
each numerator $\mathcal{N}_{i_{1} \cdots i_{k}}$ can be treated as a rank- k polynomial in $\mathbf{z} \equiv\left(x_{1}, x_{2}, x_{3}, x_{4}, \mu^{2}\right)$,

$$
\mathcal{N}_{i_{1} \cdots i_{k}}=\sum_{\vec{j} \in J(k)} \alpha_{\vec{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}
$$

$$
J(k) \equiv\left\{\vec{j}=\left(j_{1}, \ldots, j_{5}\right): j_{1}+j_{2}+j_{3}+j_{4}+2 j_{5} \leq k\right\} .
$$

- Step 1. Since $n>5$, the Proposition 2.2 guarantees that $\mathcal{N}_{0 \cdots n-1}$ is reducible, and, by iteration, it can be written as a linear combination of 5 -point integrands $\mathcal{I}_{i_{1} \cdots i_{5}}$.
(V) Step 1. Since $n>5$, the Proposition 2.2 guarantees that $\mathcal{N}_{0 \cdots n-1}$ is reducible, and, by iteration, it can be written as a linear combination of 5 -point integrands $\mathcal{I}_{i_{1} \cdots i_{5}}$.
- Step 2. The numerator of each $\mathcal{I}_{i_{1} \ldots i_{5}}$ is a rank-5 polynomial in \mathbf{z}. We define the ideal $\mathcal{J}_{i_{1} \cdots i_{5}}$, and compute the Gröbner basis $\mathcal{G}_{i_{1} \cdots i_{5}}=\left(g_{1}, \ldots, g_{5}\right)$, which is found to have a remarkably simple form:

$$
g_{i}(\mathbf{z})=c_{i}+z_{i},(i=1, \ldots, 5)
$$

The division of $\mathcal{N}_{i_{1} \cdots i_{5}}$ modulo $\mathcal{G}_{i_{1} \cdots i_{5}}$ gives a constant remainder,

$$
\begin{aligned}
& \Delta_{i_{1} \cdots i_{5}}=c_{0} \\
& \Gamma_{i_{1} \cdots i_{5}}=\sum_{\kappa=1}^{5} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{5}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})
\end{aligned}
$$

where $\mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{5}}$ are the numerators of the 4-point integrands, $\mathcal{I}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{5}}$, obtained by removing the i_{κ}-th denominator.

V Step 3. For each $\mathcal{I}_{i_{1} \cdots i_{4}}$, the numerator $\mathcal{N}_{i_{1} \cdots i_{4}}$ is a rank-4 polynomial in z. The Gröbner basis $\mathcal{G}_{i_{1} \cdots i_{4}}$ of the ideal $\mathcal{J}_{i_{1} \cdots i_{4}}$ contains four elements. Dividing $\mathcal{N}_{i_{1} \cdots i_{4}}$ modulo $\mathcal{G}_{i_{1} \cdots i_{4}}$, we obtain

$$
\begin{aligned}
\Delta_{i_{1} \cdots i_{4}} & =c_{0}+c_{1} x_{4}+\mu^{2}\left(c_{2}+c_{3} x_{4}+\mu^{2} c_{4}\right) . \\
\Gamma_{i_{1} \cdots i_{4}} & =\sum_{\kappa=1}^{4} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{4}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})
\end{aligned}
$$

contains the numerators of 3 -point integrands $\mathcal{I}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{4}}$.
(V) Step 3. For each $\mathcal{I}_{i_{1} \cdots i_{4}}$, the numerator $\mathcal{N}_{i_{1} \cdots i_{4}}$ is a rank-4 polynomial in z. The Gröbner basis $\mathcal{G}_{i_{1} \cdots i_{4}}$ of the ideal $\mathcal{J}_{i_{1} \cdots i_{4}}$ contains four elements. Dividing $\mathcal{N}_{i_{1} \cdots i_{4}}$ modulo $\mathcal{G}_{i_{1} \cdots i_{4}}$, we obtain

$$
\begin{aligned}
\Delta_{i_{1} \cdots i_{4}} & =c_{0}+c_{1} x_{4}+\mu^{2}\left(c_{2}+c_{3} x_{4}+\mu^{2} c_{4}\right) . \\
\Gamma_{i_{1} \cdots i_{4}} & =\sum_{\kappa=1}^{4} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{4}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})
\end{aligned}
$$

contains the numerators of 3 -point integrands $\mathcal{I}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{4}}$.

- Step 4. The Gröbner basis $\mathcal{G}_{i_{1} i_{2} i_{3}}$ is formed by three elements, and is used to divide $\mathcal{N}_{i_{1} i_{2} i_{3}}$. The remainder $\Delta_{i_{1} i_{2} i_{3}}$ is polynomial in μ^{2} and in the third and fourth components of q in the basis $\mathcal{E}^{\left(i_{1} i_{2} i_{3}\right)}$,

$$
\Delta_{i_{1} i_{2} i_{3}}=c_{0}+c_{1} x_{3}+c_{2} x_{3}^{2}+c_{3} x_{3}^{3}+c_{4} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{4}^{3}+\mu^{2}\left(c_{7}+c_{8} x_{3}+c_{9} x_{4}\right) .
$$

The term $\Gamma_{i_{1} i_{2} i_{3}}$ generates the rank-2 numerators of the 2-point integrands $\mathcal{I}_{i_{1} i_{2}}, \mathcal{I}_{i_{1} i_{3}}$, and $\mathcal{I}_{i_{2} i_{3}}$.

- Step 5. The remainder of the division of $\mathcal{N}_{i_{1} i_{2}}$ by the two elements of $\mathcal{G}_{i_{1} i_{2}}$ is:

$$
\Delta_{i_{1} i_{2}}=c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{3}^{2}+c_{6} x_{4}^{2}+c_{7} x_{2} x_{3}+c_{9} x_{2} x_{4}+c_{9} \mu^{2} .
$$

It is polynomial in μ^{2} and in the last three components of q in the basis $\mathcal{E}^{\left(i_{1} i_{2}\right)}$. The reducible term of the division, $\Gamma_{i_{1} i_{2}}$, generates the rank- 1 integrands, $\mathcal{I}_{i_{1}}$, and $\mathcal{I}_{i_{2}}$.

- Step 5. The remainder of the division of $\mathcal{N}_{i_{1} i_{2}}$ by the two elements of $\mathcal{G}_{i_{1} i_{2}}$ is:

$$
\Delta_{i_{1} i_{2}}=c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{3}^{2}+c_{6} x_{4}^{2}+c_{7} x_{2} x_{3}+c_{9} x_{2} x_{4}+c_{9} \mu^{2} .
$$

It is polynomial in μ^{2} and in the last three components of q in the basis $\mathcal{E}^{\left(i_{1} i_{2}\right)}$. The reducible term of the division, $\Gamma_{i_{1} i_{2}}$, generates the rank- 1 integrands, $\mathcal{I}_{i_{1}}$, and $\mathcal{I}_{i_{2}}$.

- Step 6. The numerator of the 1-point integrands is linear in the components of the loop momentum in the basis $\mathcal{E}^{\left(i_{1}\right)}$,

$$
\mathcal{N}_{i_{1}}=\beta_{0}+\sum_{j=1}^{4} \beta_{j} x_{j}
$$

The only element of the Gröbner basis $\mathcal{G}_{i_{1}}$ is $D_{i_{1}}$, which is quadratic in z. Therefore the division modulo $\mathcal{G}_{i_{1}}$, leads to a vanishing quotient, hence

$$
\mathcal{N}_{i_{1}}=\Delta_{i_{1}} .
$$

- Step 7. Collecting all the remainders computed in the previous steps, we obtain the complete decomposition of $\mathcal{I}_{0 \cdots n-1}$ in terms of its multi-pole structure

$$
\mathcal{I}_{0 \cdots n-1}=\sum_{k=1}^{5}\left(\sum_{1=i_{1}<\cdots<i_{k}}^{n-1} \frac{\Delta_{i_{1} \cdots i_{k}}}{D_{i_{1}} \cdots D_{i_{k}}}\right) .
$$

which reproduces the well-known one-loop d-dimensional integrand decomposition formula

GroebnerBasis[\{poly, poly $\left.\left._{2}, \ldots\right\},\left\{x_{1}, x_{2}, \ldots\right\}\right]$ gives a
list of polynomials that form a Gröbner basis for the set of polynomials poly ${ }_{i}$.

PolynomialReduce[poly, $\left\{\right.$ poly $_{1}$, poly $\left._{2}, \ldots\right\},\left\{x_{1}, x_{2}, \ldots\right\}$ yields
a list representing a reduction of poly in terms of the poly y_{i}. The list has the form $\left\{\left\{a_{1}, a_{2}, \ldots\right\}, b\right\}$, where b is minimal and a_{1} poly $_{1}+a_{2}$ poly $_{2}+\ldots+b$ is exactly poly. >>

WWhat can we do within this new framework?

The Maximum-Cut Theorem

At ℓ loops, in four dimensions, we define a maximum-cut as a (4 $)$-ple cut

$$
D_{i_{1}}=D_{i_{2}}=\cdots=D_{i_{4 \ell}}=0
$$

which constrains completely the components of the loop momenta. In four dimensions this implies the presence of four constraints for each loop momenta.
We assume that:
in non-exceptional phase-space points, a maximum-cut has a finite number n_{s} of solutions, each with multiplicity one.
Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by n_{s} coefficients, which admits a univariate representation of degree $\left(n_{s}-1\right)$.

THE MAXIMUM-CUT THEOREM

At ℓ loops, in four dimensions, we define a maximum-cut as a (4)-ple cut

$$
D_{i_{1}}=D_{i_{2}}=\cdots=D_{i_{4 \ell}}=0
$$

which constrains completely the components of the loop momenta. In four dimensions this implies the presence of four constraints for each loop momenta.
We assume that:
in non-exceptional phase-space points, a maximum-cut has a finite number n_{s} of solutions, each with multiplicity one.
Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by n_{s} coefficients, which admits a univariate representation of degree $\left(n_{s}-1\right)$.

diagram	Δ	n_{s}	diagram	Δ	n_{s}
	c_{0}	1	\square	$c_{0}+c_{1} z$	2
	$\sum_{i=0}^{3} c_{i} z^{i}$	4		$\sum_{i=0}^{3} c_{i} z^{i}$	4
	$\sum_{i=0}^{7} c_{i} z^{i}$	8		$\sum_{i=0}^{7} c_{i} z^{i}$	8

2-LOOP 5-POINT AMPLITUDES IN N=4 SYM

Bern, Czakon, Kosower, Roiban, Smirnov
Arkani-Hamed, Bourjaily, Cachazo, Caron-Houot, Trnka
Drummond, Henn, Trnka
Carrasco, Johansson

(e)

8 Integrand

$$
\mathcal{I}_{1 \ldots 8} \equiv \frac{\mathcal{N}_{1} \ldots 8(q, k)}{D_{1}(q, k) \cdots D_{8}(q, k)},
$$

8 Momentum basis $\quad q^{\mu}=\sum_{i=1}^{4} y_{i} \tau_{i}^{\mu}, \quad k^{\mu}=\sum_{i=1}^{4} x_{i} e_{i}^{\mu}$.

Generic Numerator

$$
\mathcal{N}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)=\sum_{\vec{j} \in J(k)} \alpha_{\vec{j}} x_{1}^{j_{1}} x_{2}^{j_{2}} x_{3}^{j_{3}} x_{4}^{j_{4}} y_{1}^{j_{5}} y_{2}^{j_{6}} y_{3}^{j_{7}} y_{4}^{j_{8}},
$$

with $J(k)$ being the set of values for the exponents compatible with the renormalizability

Polynomial Division $\quad \mathcal{N}_{i_{1} \cdots i_{n}}(\mathbf{z})=\sum_{\kappa=1}^{n} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{n}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})+\Delta_{i_{1} \cdots i_{n}}(\mathbf{z})$.

2-Loop Integrand Decomposition Formula (4D)

$$
\mathcal{I}_{n}=\sum_{i_{1} \ll i_{8}=1}^{n} \frac{\Delta_{i_{1} \cdots i_{8}}}{D_{i_{1}} \cdots D_{i_{8}}}+\sum_{i_{1} \ll i_{7}=1}^{n} \frac{\Delta_{i_{1} \cdots i_{7}}}{D_{i_{1}} \cdots D_{i_{7}}}+\cdots+\sum_{i_{1}<i_{2}=1}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{i=1}^{n} \frac{\Delta_{i}}{D_{i}}+\mathcal{Q}_{\varnothing}
$$

The Pentabox diagram in N=4 SYM

$$
\begin{aligned}
& D_{1}=k^{2} \\
& D_{2}=\left(k+p_{2}\right)^{2} \\
& D_{3}=\left(k-p_{1}\right)^{2} \\
& D_{4}=q^{2} \\
& D_{5}=\left(q+p_{3}\right)^{2} \\
& D_{6}=\left(q-p_{4}\right)^{2} \\
& D_{7}=\left(q-p_{4}-p_{5}\right)^{2} \\
& D_{8}=\left(q+k+p_{2}+p_{3}\right)^{2}
\end{aligned}
$$

$N(q, k)=2 q \cdot v+\alpha \quad$ Carrasco \& Johansson (2011)
$v^{\mu}=\frac{1}{4}\left(\gamma_{12}\left(p_{1}^{\mu}-p_{2}^{\mu}\right)+\gamma_{23}\left(p_{2}^{\mu}-p_{3}^{\mu}\right)+2 \gamma_{45}\left(p_{4}^{\mu}-p_{5}^{\mu}\right)+\gamma_{13}\left(p_{1}^{\mu}-p_{3}^{\mu}\right)\right)$
$\alpha=\frac{1}{4}\left(2 \gamma_{12}\left(s_{45}-s_{12}\right)+\gamma_{23}\left(s_{45}+3 s_{12}-s_{13}\right)+2 \gamma_{45}\left(s_{14}-s_{15}\right)+\gamma_{13}\left(s_{12}+s_{45}-s_{13}\right)\right)$

5-POINT 8FOLD-CUT $\quad D_{1}=\ldots=D_{8}=0$

$$
\Delta_{12345678}(q, k)=\operatorname{Res}_{12345678}\left\{\mathcal{N}_{1 \ldots 8}(q, k)\right\}
$$

$$
q^{\mu}=\sum_{i=1}^{4} y_{i} \tau_{i}^{\mu}, \quad k^{\mu}=\sum_{i=1}^{4} x_{i} e_{i}^{\mu} . \quad e_{1}=p_{1}, \quad e_{2}=p_{2}, \quad \tau_{1}=p_{3}, \quad \tau_{2}=p_{4}
$$

$\Delta_{12345678}(q, k)=c_{12345678,0}+c_{12345678,1} y_{4}+c_{12345678,2} x_{3}+c_{12345678,3} x_{4}$.
[Maximum Cut Thm]

5-POINT 7FOLD-CUT $\quad D_{1}=\ldots=D_{6}=D_{8}=0$

$\Delta_{1234568}(q, k)=\operatorname{Res}_{1234568}\left\{\frac{N(q, k)-\Delta_{12345678}(q, k)}{D_{7}}\right\}$.
$q^{\mu}=\sum_{i=1}^{4} y_{i} \tau_{i}^{\mu}, \quad k^{\mu}=\sum_{i=1}^{4} x_{i} e_{i}^{\mu}$.

$$
e_{1}=p_{1}, \quad e_{2}=p_{2}, \quad \tau_{1}=p_{3}, \quad \tau_{2}=p_{4}
$$

$$
\begin{align*}
\Delta_{1234568} & =c_{0}+c_{1} x_{3}+c_{2} x_{3}^{2}+c_{3} x_{3}^{3}+c_{4} x_{3}^{4}+c_{5} x_{4}+c_{6} x_{4}^{2}+c_{7} x_{4}^{3}+c_{8} x_{4}^{4} \\
& +c_{9} y_{3}+c_{10} x_{4} y_{3}+c_{11} y_{3}^{2}+c_{12} x_{4} y_{3}^{2}+c_{13} y_{3}^{3}+c_{14} x_{4} y_{3}^{3}+c_{15} y_{3}^{4} \\
& +c_{16} x_{4} y_{3}^{4}+c_{17} y_{4}+c_{18} x_{3} y_{4}+c_{19} x_{3}^{2} y_{4}+c_{20} x_{3}^{3} y_{4}+c_{21} x_{3}^{4} y_{4}+c_{22} x_{4} y_{4} \\
& +c_{23} x_{4}^{2} y_{4}+c_{24} x_{4}^{3} y_{4}+c_{25} x_{4}^{4} y_{4}+c_{26} y_{4}^{2}+c_{27} x_{4} y_{4}^{2}+c_{28} y_{4}^{3}+c_{29} x_{4} y_{4}^{3} \\
& +c_{30} y_{4}^{4}+c_{31} x_{4} y_{4}^{4} \tag{3.18}
\end{align*}
$$

4-POINT 7FOLD-CUT $\quad D_{1}=\ldots=D_{5}=D_{7}=D_{8}=0$.

$$
\Delta_{1234578}(q, k)=\operatorname{Res}_{1234578}\left\{\frac{N(q, k)-\Delta_{12345678}(q, k)}{D_{6}}\right\},
$$

$$
\begin{array}{ll}
e_{1}^{\mu}=p_{1}^{\mu}, & e_{2}^{\mu}=p_{2}^{\mu}, \\
\tau_{1}^{\mu}=p_{3}^{\mu}, & \tau_{2}^{\mu}=P_{45}^{\mu}-\frac{s_{45}}{2 P_{45} \cdot \tau_{1}} \tau_{1}^{\mu} .
\end{array}
$$

parametrized using thirty-two monomials
$\left\{1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{3}^{4}, x_{4}, x_{4}^{2}, x_{4}^{3}, x_{4}^{4}, y_{3}, x_{4} y_{3}, y_{3}^{2}, x_{4} y_{3}^{2}, y_{3}^{3}, x_{4} y_{3}^{3}, y_{3}^{4}, x_{4} y_{3}^{4}, y_{4}, x_{3} y_{4}\right.$, $\left.x_{3}^{2} y_{4}, x_{3}^{3} y_{4}, x_{3}^{4} y_{4}, x_{4} y_{4}, x_{4}^{2} y_{4}, x_{4}^{3} y_{4}, x_{4}^{4} y_{4}, y_{4}^{2}, x_{4} y_{4}^{2}, y_{4}^{3}, x_{4} y_{4}^{3}, y_{4}^{4}, x_{4} y_{4}^{4}\right\}$.

PENTABOX INTEGRAND DECOMPOSITION

$$
\begin{aligned}
N(q, k)= & \Delta_{12345678}(q, k)+ \\
& +\Delta_{1234568}(q, k) D_{7}+\Delta_{1234578}(q, k) D_{6}+ \\
& +\Delta_{1234678}(q, k) D_{5}+\Delta_{1235678}(q, k) D_{4}= \\
= & c_{12345678,0}+c_{12345678,1}\left(q \cdot p_{1}\right)+ \\
& +c_{1234568,0} D_{7}+c_{1234578,0} D_{6}+ \\
& +c_{1234678,0} D_{5}+c_{1235678,0} D_{4},
\end{aligned}
$$

PENTACROSS INTEGRAND DECOMPOSITION

$D_{1}=k^{2}$
$N(q, k)=2 q \cdot v+\alpha$
Carrasco \& Johansson (2011)
$D_{2}=\left(k+p_{2}\right)^{2}$
$D_{3}=\left(k+q-p_{4}-p_{5}\right)^{2}$
$D_{4}=q^{2}$
$D_{5}=\left(q+p_{3}\right)^{2}$
$D_{6}=\left(q-p_{4}\right)^{2}$
$D_{7}=\left(q-p_{4}-p_{5}\right)^{2}$

$$
\begin{aligned}
v^{\mu} & =\frac{1}{4}\left(\gamma_{12}\left(p_{1}^{\mu}-p_{2}^{\mu}\right)+\gamma_{23}\left(p_{2}^{\mu}-p_{3}^{\mu}\right)+2 \gamma_{45}\left(p_{4}^{\mu}-p_{5}^{\mu}\right)+\gamma_{13}\left(p_{1}^{\mu}-p_{3}^{\mu}\right)\right) \\
\alpha & =\frac{1}{4}\left(2 \gamma_{12}\left(s_{45}-s_{12}\right)+\gamma_{23}\left(s_{45}+3 s_{12}-s_{13}\right)+2 \gamma_{45}\left(s_{14}-s_{15}\right)+\gamma_{13}\left(s_{12}+s_{45}-s_{13}\right)\right)
\end{aligned}
$$

PENTACROSS INTEGRAND DECOMPOSITION

```
\(D_{1}=k^{2}\)
\(D_{2}=\left(k+p_{2}\right)^{2}\)
\(D_{3}=\left(k+q-p_{4}-p_{5}\right)^{2}\)
\(D_{4}=q^{2}\)
\(D_{5}=\left(q+p_{3}\right)^{2}\)
\(D_{6}=\left(q-p_{4}\right)^{2}\)
\(D_{7}=\left(q-p_{4}-p_{5}\right)^{2}\)
\(D_{8}=\left(q+k+p_{2}+p_{3}\right)^{2}\)
```


$$
\begin{aligned}
N(q, k)= & \Delta_{12345678}(q, k)+ \\
& +\Delta_{1234568}(q, k) D_{7}+\Delta_{1234578}(q, k) D_{6}+ \\
& +\Delta_{1234678}(q, k) D_{5}+\Delta_{1235678}(q, k) D_{4}= \\
= & c_{12345678,0}+c_{12345678,1}\left(q \cdot p_{1}\right)+ \\
& +c_{1234568,0} D_{7}+c_{1234578,0} D_{6}+ \\
& +c_{1234678,0} D_{5}+c_{1235678,0} D_{4},
\end{aligned}
$$

The coefficients are the same of the planar case.

The Last Contribution to the 5-point N=4 SYM

$$
\begin{aligned}
& D_{1}=k^{2} \\
& D_{2}=\left(k-p_{1}\right)^{2} \\
& D_{3}=\left(k+p_{2}\right)^{2} \\
& D_{4}=q^{2} \\
& D_{5}=\left(q+p_{3}\right)^{2} \\
& D_{6}=\left(q-p_{4}\right)^{2} \\
& D_{7}=\left(q-k+p_{1}+p_{3}\right)^{2} \\
& D_{8}=\left(q-k-p_{2}-p_{4}\right)^{2}
\end{aligned}
$$

$\mathrm{N}(\mathrm{q}, \mathrm{k})$ is linear in the loop momenta
Carrasco \& Johansson (2011)

5-POINT 8FOLD-CUT
 $D_{1}=\ldots=D_{8}=0$
 8 solutions

$$
\begin{aligned}
& \Delta_{12345678}(q, k)=\operatorname{Res}_{12345678}\left\{\mathcal{N}_{1 \cdots 8}(q, k)\right\} . \\
& q^{\mu}=\sum_{i=1}^{4} y_{i} \tau_{i}^{\mu}, \quad k^{\mu}=\sum_{i=1}^{4} x_{i} e_{i}^{\mu} . \\
& e_{1}=p_{1}, \quad e_{2}=p_{2}, \quad \tau_{1}=p_{3}, \quad \tau_{2}=p_{4}
\end{aligned}
$$

The residue contains 8 monomials
$\left\{1, x_{4}, y_{3}, y_{3}^{2}, y_{4}, x_{4} y_{4}, y_{4}^{2}, y_{4}^{3}\right\}$
[Maximum Cut Thm]

5-POINT 8FOLD-CUT
 $D_{1}=\ldots=D_{8}=0$
 8 solutions

$$
\begin{aligned}
& \Delta_{12345678}(q, k)=\operatorname{Res}_{12345678}\left\{\mathcal{N}_{1 \cdots 8}(q, k)\right\} . \\
& q^{\mu}=\sum_{i=1}^{4} y_{i} \tau_{i}^{\mu}, \quad k^{\mu}=\sum_{i=1}^{4} x_{i} e_{i}^{\mu} . \\
& e_{1}=p_{1}, \quad e_{2}=p_{2}, \quad \tau_{1}=p_{3}, \quad \tau_{2}=p_{4}
\end{aligned}
$$

The residue contains 8 monomials
... FURTHER REDUCTION ...

2-LOOP 5-POINT AMPLITUDES IN N=8 SUGRA

Same topologies as in the $\mathrm{N}=4$ SYM, but $\mathrm{N}(\mathrm{q}, \mathrm{k})$ is quadratic in the loop momenta
Carrasco \& Johansson (2011)

The integrand reduction is analogous to the N=4 SYM case, involving the same cuts and residues.

Due to one extra power of loop momenta, the reduction involves also 6-denominator diagrams: in the corresponding residues, the constant term is the only non-vanishing coefficient.

CONCLUSIONS

A unique mathematical framework for Amplitudes at any order in Perturbation Theory
\% one ingredient: Feynman denominator
Y one operation: partial fractioning
\& Multivariate Polynomial Division/Groebner-basis generates the residue at an arbitrary cut
\& the general expression for the factorized amplitude
\& Residues' classification complementary to Landau's singularity classification
If byproduct: the Maximum-cut Theorem
\& Recursive generation of the Integrand-decomposition Formula @ any loop
Amplitude decomposition from the shape of residues
\% ISP's determine a (non-minimal) MI-set

OUTLOOK

8 Automation

Qadditional identities at the integrand level to reduce the number of MI's

Extra Slides

2-loop Decomposition in DimReg (t'HV)

$$
\begin{equation*}
\Pi_{\mu \nu}=\left(g_{\mu \nu}^{(d)}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right) \Pi\left(k^{2}\right) \tag{1}
\end{equation*}
$$

where $g_{\mu \nu}^{(d)}$ is the metric tensor in $d=4-2 \epsilon$ dimensions and $\Pi\left(k^{2}\right)$ can be obtained by tracing the previous equation ${ }^{1}$

$$
\begin{equation*}
\Pi\left(k^{2}\right)=\frac{1}{d-1} \Pi^{\mu}{ }_{\mu} . \tag{2}
\end{equation*}
$$

The two-loop 1PI contributions are given by the diagrams depicted in Fig. 1, hence we may write

$$
\begin{equation*}
(d-1) \Pi_{1 \mathrm{PI}}^{(2 l)}\left(k^{2}\right)=\Pi_{a}\left(k^{2}\right)+\Pi_{b}\left(k^{2}\right)+\Pi_{c}\left(k^{2}\right) \tag{3}
\end{equation*}
$$

where each contribution is given by the trace of the corresponding diagram. Since the last two diagrams are related by symmetry, I will only give the reduction of the first two.

The d-dimensional loop momenta \bar{q}_{1} and \bar{q}_{2} are decomposed as usual

$$
\begin{equation*}
\bar{q}_{i}=q_{i}+\vec{\mu}_{i}, \quad \bar{q}_{i} \cdot \bar{q}_{j}=q_{i} \cdot q_{j}-\mu_{i j} \tag{4}
\end{equation*}
$$

with $\mu_{i j} \equiv \vec{\mu}_{i} \cdot \vec{\mu}_{j}$.

2 Diagram (a)

The denominators are

$$
\begin{align*}
& D_{1}=q_{1}^{2}-\mu_{11} \\
& D_{3}=q_{2}^{2}-\mu_{22} \\
& D_{2}=q_{1}^{2}+k^{2}+2\left(k \cdot q_{1}\right)-\mu_{11} \\
& D_{4}=q_{2}^{2}+k^{2}+2\left(k \cdot q_{2}\right)-\mu_{22} \\
& D_{5}=q_{1}^{2}+q_{2}^{2}-2\left(q_{1} \cdot q_{2}\right)-\mu_{11}-\mu_{22}+2 \mu_{12} . \tag{5}
\end{align*}
$$

The integrand is

$$
\begin{equation*}
\mathcal{I}_{a}=\frac{\mathcal{N}_{a}}{D_{1} \ldots D_{5}} \tag{6}
\end{equation*}
$$

and the numerator

$$
\begin{equation*}
\mathcal{N}_{a}=\mathcal{N}_{a}^{(0)}+\mathcal{N}_{a}^{(1)} \epsilon+\mathcal{N}_{a}^{(2)} \epsilon^{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{N}_{a}^{(0)}= & -32 \mu_{12}^{2}-32\left(k \cdot q_{1}\right)\left(k \cdot q_{2}\right)-32\left(k \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)+32\left(k \cdot q_{1}\right) \mu_{12} \\
& -32\left(k \cdot q_{2}\right)\left(q_{1} \cdot q_{2}\right)+32\left(k \cdot q_{2}\right) \mu_{12}+64\left(q_{1} \cdot q_{2}\right) \mu_{12}-32\left(q_{1} \cdot q_{2}\right)^{2} \\
\mathcal{N}_{a}^{(1)}= & 32 \mu_{12}^{2}+16 \mu_{11} \mu_{22}+16 k^{2}\left(q_{1} \cdot q_{2}\right)-16 k^{2} \mu_{12}+32\left(k \cdot q_{1}\right)\left(k \cdot q_{2}\right) \\
& +32\left(k \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)+16\left(k \cdot q_{1}\right) q_{2}^{2}-32\left(k \cdot q_{1}\right) \mu_{12}-16\left(k \cdot q_{1}\right) \mu_{22} \\
& +16\left(k \cdot q_{2}\right) q_{1}^{2}+32\left(k \cdot q_{2}\right)\left(q_{1} \cdot q_{2}\right)-32\left(k \cdot q_{2}\right) \mu_{12}-16\left(k \cdot q_{2}\right) \mu_{11} \\
& +16 q_{1}^{2} q_{2}^{2}-16 q_{1}^{2} \mu_{22}-64\left(q_{1} \cdot q_{2}\right) \mu_{12}+32\left(q_{1} \cdot q_{2}\right)^{2}-16 q_{2}^{2} \mu_{11} \\
\mathcal{N}_{a}^{(2)}= & -16 \mu_{11} \mu_{22}-16 k^{2}\left(q_{1} \cdot q_{2}\right)+16 k^{2} \mu_{12}-16\left(k \cdot q_{1}\right) q_{2}^{2}+16\left(k \cdot q_{1}\right) \mu_{22} \\
& -16\left(k \cdot q_{2}\right) q_{1}^{2}+16\left(k \cdot q_{2}\right) \mu_{11}-16 q_{1}^{2} q_{2}^{2}+16 q_{1}^{2} \mu_{22}+16 q_{2}^{2} \mu_{11} . \tag{8}
\end{align*}
$$

The complete decomposition of the numerators reads

$$
\begin{align*}
\mathcal{N}_{a}^{(0)}= & D_{5} \Delta_{1234}^{(0)}+D_{4}\left(8 k^{2}\right)+D_{4} D_{5}(4)+D_{3}\left(8 k^{2}\right)+D_{3} D_{5}(4)+D_{3} D_{4}(-8) \\
& +D_{2}\left(8 k^{2}\right)+D_{2} D_{5}(4)+D_{2} D_{4}(-8)+D_{2} D_{4} D_{5}\left(\frac{4}{k^{2}}\right)+D_{2} D_{3} D_{5}\left(-\frac{4}{k^{2}}\right) \\
& +D_{1}\left(8 k^{2}\right)+D_{1} D_{5}(4)+D_{1} D_{4} D_{5}\left(-\frac{4}{k^{2}}\right)+D_{1} D_{3}(-8)+D_{1} D_{3} D_{5}\left(\frac{4}{k^{2}}\right) \\
& +D_{1} D_{2}(-8)-8\left(k^{2}\right)^{2} \\
\mathcal{N}_{a}^{(1)}= & D_{5} \Delta_{1234}^{(1)}+D_{4}\left(-8 k^{2}\right)+D_{4} D_{5}(-4)+D_{3}\left(-8 k^{2}\right)+D_{3} D_{5}(-4)+D_{3} D_{4}(8) \\
& +D_{2}\left(-8 k^{2}\right)+D_{2} D_{5}(-4)+D_{2} D_{4}(8)+D_{2} D_{4} D_{5}\left(-\frac{4}{k^{2}}\right)+D_{2} D_{3}(8) \\
& +D_{2} D_{3} D_{5}\left(\frac{4}{k^{2}}\right)+D_{1}\left(-8 k^{2}\right)+D_{1} D_{5}(-4)+D_{1} D_{4}(8)+D_{1} D_{4} D_{5}\left(\frac{4}{k^{2}}\right) \\
& +D_{1} D_{3}(8)+D_{1} D_{3} D_{5}\left(-\frac{4}{k^{2}}\right)+D_{1} D_{2}(8)+8\left(k^{2}\right)^{2} \\
\mathcal{N}_{a}^{(2)}= & +D_{5}\left(8 k^{2}\right)+D_{2} D_{3}(-8)+D_{1} D_{4}(-8) \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta_{1234}^{(0)}=-16 \mu_{12}-12 k^{2}+\frac{16\left(q_{1} \cdot E_{2}\right)\left(q_{2} \cdot E_{2}\right)}{E_{2}^{2}}+\frac{16\left(q_{1} \cdot e_{3}\right)\left(q_{2} \cdot e_{4}\right)}{\left(e_{3} \cdot e_{4}\right)}+\frac{16\left(q_{1} \cdot e_{4}\right)\left(q_{2} \cdot e_{3}\right)}{\left(e_{3} \cdot e_{4}\right)} \\
& \Delta_{1234}^{(1)}=16 \mu_{12}+4 k^{2}-\frac{16\left(q_{1} \cdot E_{2}\right)\left(q_{2} \cdot E_{2}\right)}{E_{2}^{2}}-\frac{16\left(q_{1} \cdot e_{3}\right)\left(q_{2} \cdot e_{4}\right)}{\left(e_{3} \cdot e_{4}\right)}-\frac{16\left(q_{1} \cdot e_{4}\right)\left(q_{2} \cdot e_{3}\right)}{\left(e_{3} \cdot e_{4}\right)} \tag{10}
\end{align*}
$$

The decomposition in terms of MIs is obtained by plugging these expressions in Eq. (6) and dropping those contributions which vanish upon integration. We obtain

$$
\begin{align*}
\int d^{d} q_{1} d^{d} q_{2} \mathcal{I}_{a}= & \int d^{d} q_{1} d^{d} q_{2}\left(\quad-\frac{8\left(k^{2}\right)^{2}}{D_{1} D_{2} D_{3} D_{4} D_{5}}-\frac{12 k^{2}}{D_{1} D_{2} D_{3} D_{4}}+\frac{8 k^{2}}{D_{1} D_{2} D_{3} D_{5}}\right. \\
& \left.+\frac{8 k^{2}}{D_{1} D_{2} D_{4} D_{5}}+\frac{8 k^{2}}{D_{1} D_{3} D_{4} D_{5}}+\frac{8 k^{2}}{D_{2} D_{3} D_{4} D_{5}}\right) \\
& +\epsilon \int d^{d} q_{1} d^{d} q_{2}\left(\frac{8\left(k^{2}\right)^{2}}{D_{1} D_{2} D_{3} D_{4} D_{5}}+\frac{4 k^{2}}{D_{1} D_{2} D_{3} D_{4}}-\frac{8 k^{2}}{D_{1} D_{2} D_{3} D_{5}}\right. \\
& -\frac{8 k^{2}}{D_{1} D_{2} D_{4} D_{5}}-\frac{8 k^{2}}{D_{1} D_{3} D_{4} D_{5}}-\frac{8 k^{2}}{D_{2} D_{3} D_{4} D_{5}} \\
& \left.+\frac{8}{D_{1} D_{4} D_{5}}+\frac{8}{D_{2} D_{3} D_{5}}\right) \\
& +\epsilon^{2 \int d^{d} q_{1} d^{d} q_{2}\left(\frac{8 k^{2}}{D_{1} D_{2} D_{3} D_{4}}-\frac{8}{D_{1} D_{4} D_{5}}-\frac{8}{D_{2} D_{3} D_{5}}\right)} \tag{11}
\end{align*}
$$

3 Diagram (b)

The denominators are

$$
\begin{align*}
& D_{1}=q_{1}^{2}-\mu_{11} \\
& D_{3}=q_{2}^{2}-\mu_{22} \\
& D_{2}=q_{1}^{2}+k^{2}-2\left(k \cdot q_{1}\right)-\mu_{11} \\
& D_{4}=q_{1}^{2}+q_{2}^{2}+2\left(q_{1} \cdot q_{2}\right)-\mu_{11}-\mu_{22}-2 \mu_{12} \tag{12}
\end{align*}
$$

The integrand is

$$
\begin{equation*}
\mathcal{I}_{b}=\frac{\mathcal{N}_{b}}{D_{1}^{2} D_{2} D_{3} D_{5}} \tag{13}
\end{equation*}
$$

and the numerator

$$
\begin{equation*}
\mathcal{N}_{b}=\mathcal{N}_{b}^{(0)}+\mathcal{N}_{b}^{(1)} \epsilon+\mathcal{N}_{b}^{(2)} \epsilon^{2} \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{N}_{b}^{(0)}= 16 \mu_{11} \mu_{12}+16 \mu_{11} 2-16\left(k \cdot q_{1}\right) q_{1}^{2}-32\left(k \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)+32\left(k \cdot q_{1}\right) \mu_{12} \\
&+16\left(k \cdot q_{1}\right) \mu_{11}+16\left(k \cdot q_{2}\right) q_{1}^{2}-16\left(k \cdot q_{2}\right) \mu_{11}+16 q_{1}^{2}\left(q_{1} \cdot q_{2}\right) \\
&-16 q_{1}^{2} \mu_{12}-32 q_{1}^{2} \mu_{11}+16\left(q_{1}^{2}\right)^{2}-16\left(q_{1} \cdot q_{2}\right) \mu_{11} \\
& \mathcal{N}_{b}^{(1)}=-32 \mu_{11} \mu_{12}-32 \mu_{11} 2+32\left(k \cdot q_{1}\right) q_{1}^{2}+64\left(k \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)-64\left(k \cdot q_{1}\right) \mu_{12} \\
&-32\left(k \cdot q_{1}\right) \mu_{11}-32\left(k \cdot q_{2}\right) q_{1}^{2}+32\left(k \cdot q_{2}\right) \mu_{11}-32 q_{1}^{2}\left(q_{1} \cdot q_{2}\right) \\
&+32 q_{1}^{2} \mu_{12}+64 q_{1}^{2} \mu_{11}-32\left(q_{1}^{2}\right)^{2}+32\left(q_{1} \cdot q_{2}\right) \mu_{11} \\
& \mathcal{N}_{b}^{(2)}=16 \mu_{11} \mu_{12}+16 \mu_{11} 2-16\left(k \cdot q_{1}\right) q_{1}^{2}-32\left(k \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)+32\left(k \cdot q_{1}\right) \mu_{12} \\
&+16\left(k \cdot q_{1}\right) \mu_{11}+16\left(k \cdot q_{2}\right) q_{1}^{2}-16\left(k \cdot q_{2}\right) \mu_{11}+16 q_{1}^{2}\left(q_{1} \cdot q_{2}\right)-16 q_{1}^{2} \mu_{12} \\
&-32 q_{1}^{2} \mu_{11}+16\left(q_{1}^{2}\right)^{2}-16\left(q_{1} \cdot q_{2}\right) \mu_{11} . \tag{15}
\end{align*}
$$

The complete decomposition of the numerators reads

$$
\begin{align*}
\mathcal{N}_{b}^{(0)}= & D_{4}\left(-8 k^{2}\right)+D_{3}\left(8 k^{2}\right)+D_{2} D_{4}(8)+D_{2} D_{3}(-8)+D_{1}\left(16\left(k \cdot q_{2}\right)\right)+D_{1}^{2}(8) \\
\mathcal{N}_{b}^{(1)}= & D_{4}\left(16 k^{2}\right)+D_{3}\left(-16 k^{2}\right)+D_{2} D_{4}(-16)+D_{2} D_{3}(16)+D_{1}\left(-32\left(k \cdot q_{2}\right)\right) \\
& +D_{1}^{2}(-16) \\
\mathcal{N}_{b}^{(2)}= & D_{4}\left(-8 k^{2}\right)+D_{3}\left(8 k^{2}\right)+D_{2} D_{4}(8)+D_{2} D_{3}(-8)+D_{1}\left(16\left(k \cdot q_{2}\right)\right)+D_{1}^{2}(8) \tag{16}
\end{align*}
$$

The decomposition in terms of MIs is

$$
\begin{equation*}
\int d^{d} q_{1} d^{d} q_{2} \mathcal{I}_{b}=\left(1-2 \epsilon+\epsilon^{2}\right) \int d^{d} q_{1} d^{d} q_{2}\left(\frac{16\left(k \cdot q_{2}\right)}{D_{1} D_{2} D_{3} D_{4}}+\frac{8}{D_{2} D_{3} D_{4}}\right) \tag{17}
\end{equation*}
$$

Algebraic Geometry

- deals with multivariate polynomials in $\mathbf{z}=\left(z_{1}, z_{2}, \ldots\right)$.
- Ideal $\mathcal{J} \equiv\left\langle\omega_{1}(\mathbf{z}) \cdots \omega_{s}(\mathbf{z})\right\rangle$ generated by ω_{i}
- $\mathcal{J}=\left\{\sum_{i} h_{i}(\mathbf{z}) \omega_{i}(\mathbf{z})\right\}$
- polynomial coefficients $h_{i}(\mathbf{z})$
- Multivariate polynomial division of $f(\mathbf{z})$ modulo $\omega_{1}(\mathbf{z}), \ldots, \omega_{s}(\mathbf{z})$
- needs an order, i.e. $z_{1} z_{2} \stackrel{?}{>} z_{1}^{2}$
- $\rightsquigarrow f(\mathbf{z})=\sum_{i} h_{i}(\mathbf{z}) \omega_{i}(\mathbf{z})+\mathcal{R}(\mathbf{z})$
- $h_{i}(\mathbf{z}) \& \mathcal{R}(\mathbf{z})$ not unique
- Gröbner basis $\left\{g_{1}(\mathbf{z}), \ldots, g_{r}(\mathbf{z})\right\}$
- exists (Buchberger's algorithm) \& generates \mathcal{J}
- \rightsquigarrow unique $\mathcal{R}(z)$
- Hilbert's Nullstellensatz
- $V(\mathcal{J})=$ set of common zeros of \mathcal{J}
- $(f=0$ in $V(\mathcal{J})) \Rightarrow\left(f^{r} \in \mathcal{J}\right.$ for some $\left.r\right)$
- Weak Nullstellensatz: $(V(\mathcal{J})=\varnothing) \Leftrightarrow(1 \in \mathcal{J})$
weak Nullstellensatz Theorem

Theorem 1.2.3 (Weak Hilbert Nullstellensatz). If k is algebraically closed, then $V(S)=\emptyset$ iff there exists $f_{1} \ldots f_{N} \in S$ and $g_{1} \ldots g_{N} \in k\left[x_{1}, \ldots x_{n}\right]$ such that $\sum f_{i} g_{i}=1$

The German word nullstellensatz could be translated as "zero set theorem". The Weak Nullstellensatz can be rephrased as $V(S)=\emptyset$ iff $\langle S\rangle=(1)$. Since this result is central to much of what follows, we will assumo that k is alge-

Radical Ideal Given an ideal \mathcal{J}, the radical of \mathcal{J} is $\sqrt{\mathcal{J}} \equiv\left\{f \in P[\mathbf{z}]: \exists s \in \mathbb{N}, f^{s} \in \mathcal{J}\right\}$. \mathcal{J} is radical iff $\mathcal{J}=\sqrt{\mathcal{J}}$.

Finiteness Theorem

Shape Lemma

The following theorem bounds the number of points in $\mathbf{V}(I)$ whenever I is zero dimensional.

Theorem 3-4. Let I be a zero-dimensional ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then the numbei of points in $\mathbf{V}(I)$ is at most $\operatorname{dim}_{\mathbb{C}}(A)$. Equality occurs if and only if I is a radical ideal.
since $p_{\text {red }}(x) / x$ is a cubic polynomial in x^{2}.
If I is a zero-dimensional radical ideal in $S=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ then, possibly after a linear change of variables, the ring S / I is always isomorphic to the univariate quotient ring $\mathbb{Q}\left[x_{i}\right] /\left(I \cap \mathbb{Q}\left[x_{i}\right]\right)$. This is the content of the following result.

Proposition 2.3. (Shape Lemma) Let I be a zero-dimensional radical ideal in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that all d complex roots of I have distinct x_{n}-coordinates. Then the reduced Gröbner basis of I in the lexicographic term order has the shape

$$
\mathcal{G}=\left\{x_{1}-q_{1}\left(x_{n}\right), x_{2}-q_{2}\left(x_{n}\right), \ldots, x_{n-1}-q_{n-1}\left(x_{n}\right), r\left(x_{n}\right)\right\}
$$

where r is a polynomial of degree d and the q_{i} are polynomials of degree $\leq d-1$.
Far inlvnnminl svateme of moderate size. Singular is ranl.

MCT: PROOF (PART 1)

Proof. Let us parametrize the propagators using 4ℓ variables $\mathbf{z}=\left(z_{1}, \ldots z_{4 \ell}\right)$. In this parametrization, the solutions of the maximum-cut read,

$$
\mathbf{z}^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{4 \ell}^{(i)}\right), \text { with } i=1, \ldots, n_{s}
$$

Let $\mathcal{J}_{i_{1} \cdots i_{4 \ell}}$ be the ideal generated by the on-shell denominators, $\mathcal{J}_{i_{1} \cdots i_{4 \ell}}=\left\langle D_{i_{1}}, \ldots, D_{i_{4 \ell}}\right\rangle$. According to the assumptions, the number n_{s} of the solutions is finite, and each of them has multiplicity one, therefore $\mathcal{J}_{i_{1} \cdots i_{4 \ell}}$ is zero-dimensional and radical ${ }^{1}$, In this case, the Finiteness Theorem ensures that the remainder of the division of any polynomial modulo $\mathcal{J}_{i_{1} \cdots i_{4 \ell}}$ can be parametrised exactly by n_{s} coefficients.

MCT: PROOF (PART 2)

Moreover, up to a linear coordinate change, we can assume that all the solutions of the system have distinct first coordinate z_{1}, i.e. $z_{1}^{(i)} \neq z_{1}^{(j)} \forall i \neq j$. We observe that $\mathcal{J}_{i_{1} \cdots i_{4 \ell}}$ and z_{1} are in the Shape Lemma position therefore a Gröbner basis for the lexicographic order $z_{1}<z_{2}<\cdots<z_{n}$ is $\mathcal{G}_{i_{1} \cdots i_{4 \ell}}=\left\{g_{1}, \ldots, g_{4 \ell}\right\}$, in the form

$$
\left\{\begin{aligned}
& g_{1}(\mathbf{z})= \\
& g_{2}(\mathbf{z})=z_{1}\left(z_{1}\right) \\
& \vdots \\
& g_{4 \ell}(\mathbf{z})=f_{2}\left(z_{1}\right) \\
& \\
& g_{4}-f_{4 \ell}\left(z_{1}\right)
\end{aligned}\right.
$$

The functions f_{i} are univariate polynomials in z_{1}. In particular f_{1} is a rank- n_{s} square-free polynomial

$$
f_{1}\left(z_{1}\right)=\prod_{i=1}^{n_{s}}\left(z_{1}-z_{1}^{(i)}\right)
$$

i.e. it does not exhibits repeated roots. The multivariate division of $\mathcal{N}_{i_{1} \cdots 1_{4 \ell}}$ modulo $\mathcal{G}_{i_{1} \cdots i_{4 \ell}}$ leaves a remainder $\Delta_{i_{1} \cdots i_{4 \ell}}$ which is a univariate polynomial in z_{1} of degree $\left(n_{s}-1\right)$ in accordance with the Finiteness Theorem.

The factorization procedure is to cut these q_{i} successively by shifting them by $z \eta$. The on-shell conditions will give us a set of solutions, points in the complex plane, namely $z_{i}=\frac{q_{i}^{2}+m_{i}^{2}}{2 \eta \cdot q_{i}}$,

The identity which we want to establish is

$$
\begin{aligned}
\frac{1}{q_{1}^{2}+m_{1}^{2}} \frac{1}{q_{2}^{2}+m_{2}^{2}} \cdots \frac{1}{q_{n-1}^{2}+m_{n-1}^{2}} & =\frac{1}{q_{1}^{2}+m_{1}^{2}} \frac{1}{\left(q_{2}-z_{1} \eta\right)^{2}+m_{2}^{2}} \cdots \frac{1}{\left(q_{n-1}-z_{1} \eta\right)^{2}+m_{n-1}^{2}} \\
& +\frac{1}{\left(q_{1}-z_{2} \eta\right)^{2}+m_{1}^{2}} \frac{1}{q_{2}^{2}+m_{2}^{2}} \cdots \frac{1}{\left(q_{n-1}-z_{2} \eta\right)^{2}+m_{n-1}^{2}} \\
& +\cdots \cdots \cdots \cdots \\
& +\frac{1}{\left(q_{1}-z_{n-1} \eta\right)^{2}+m_{1}^{2}} \cdots \frac{1}{\left(q_{n-2}-z_{n-1} \eta\right)^{2}+m_{n-2}^{2}} \frac{1}{q_{n-1}^{2}+m_{n-1}^{2}}
\end{aligned}
$$

making cuts, we have

$$
\bar{q}_{i}^{2}+m_{i}^{2}=0 \rightarrow q_{i}^{2}+m_{i}^{2}=2 z_{i} \eta \cdot q_{i}
$$

$$
\begin{aligned}
& \left(q_{i}-z_{j} \eta\right)^{2}+m_{i}^{2}=q_{i}^{2}+m_{i}^{2}-2 z_{j} \eta \cdot q_{i} \\
& \left(q_{i}-z_{j} \eta\right)^{2}+m_{i}^{2}=2 \eta \cdot q_{i}\left(z_{i}-z_{j}\right)
\end{aligned}
$$

Putting these together, we see the identity holds if one can show

$$
\begin{align*}
& \frac{(-1)^{n}}{z_{1} z_{2} \cdots z_{n-1}}= \frac{1}{z_{1}\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right) \cdots\left(z_{1}-z_{n-1}\right)} \\
&+ \frac{1}{\left(z_{2}-z_{1}\right) z_{2}\left(z_{2}-z_{3}\right) \cdots\left(z_{2}-z_{n-1}\right)} \\
& \cdots \cdots \cdots \cdots \tag{7.9}\\
&\left(z_{n-1}-z_{1}\right)\left(z_{n-1}-z_{2}\right) \cdots\left(z_{n-1}-z_{n-2}\right) z_{n-1}
\end{align*}
$$

This is so, because (7.9) is just a formula of partial fractioning, or it is just a statement that the integral

$$
\int \frac{d z}{z\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n-1}\right)}=0
$$

for a complex variable z over a contour which encloses all the poles.

