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In the same work [44], we gave the proof of the maximum-cut theorem. The theorem

deals with cuts where the number of on-shell conditions is equal to the number of inte-

gration variables and therefore the loop momenta are completely localised. The theorem

ensures that the number of independent solutions of the maximum-cut is equal to the num-

ber of coefficients parametrizing the corresponding residue. The maximum cut theorem

generalizes at any loop the simplicity of the one-loop quadruple-cut [2, 5], where the two

coefficients parametrizing the residue are determined by the two solutions of the cut.

In this paper, we apply our algorithm to the two-loop five-point planar and non-planar

amplitudes in N = 4 super Yang-Mills (SYM) and N = 8 Supergravity (SUGRA) in four

dimensions [51, 52], whose numerators contain up to rank-two terms in each integration-

momenta. In particular, we derive the generic polynomial residues which are required by

the reduction procedure. Later, we show that the integrand reduction can be performed

both semi-numerically, by polynomial fitting, and analytically. The latter computation

has been performed generalizing the method of integrand reduction through Laurent ex-

pansion [53], which has been recently introduced to improve the integrand reduction of

one-loop amplitudes.

All the numerical and analytic computations presented in this paper have been per-

formed using c++, form [54] and the mathematica package S@M [55].

2. Integrand reduction

In this Section we describe the general strategy for the reduction of scattering amplitudes

at the integrand level, following [41,44]. In dimensional regularization an !-loop amplitude

with n denominators is written as

An =

∫

ddq̄1 . . .

∫

ddq̄! Ii1···in(q̄1, . . . , q̄!)

≡

∫

ddq̄1 . . .

∫

ddq̄!
Ni1···in(q̄1, . . . , q̄!)

Di1(q̄1, . . . , q̄!) · · ·Din(q̄1, . . . , q̄!)
,

Di =

(

∑

a

αi,aq̄a + pi

)2

−m2
i (2.1)

where q1, . . . , q! are integration momenta and αi,a ∈ {0,±1}. Objects living in d = 4− 2ε

are denoted by a bar. We use the notation q̄µa = qµa +$λqa, where q
µ
a is the four-dimensional

part of q̄a, while $λqa is its (−2ε)-dimensional part [56]. In the following we will limit

ourselves to the four-dimensional case. Extensions to higher-dimensional cases, according

to the chosen dimensional regularization scheme, can be treated analogously.

The integrand reduction methods [5, 41, 42, 53, 57–64] trade the decomposition of the

loop integrals in terms of Master Integrals (MI’s) with the algebraic problem of building a

general relation, at the integrand level, for the numerator function of the amplitudes. In

this paper we use the method introduced in [44]. The algorithm relies solely on general

properties of the loop integrand, i.e. on the maximum power of the loop momenta present

in the numerator, and on the quadratic form of Feynman propagators. The residue of
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Multi-Loop Integrand Decomposition

 Integrand Reduction Formula
2.1 for CERN

Ni1···in =
n
X

1=i1<<imax

�i1i2...imax

n
Y

h 6=i1i2...imax

Dh

+
n
X

1=i1<<(imax�1)

�i1i2...(imax�1)

n
Y

h 6=i1i2...(imax�1)

Dh

+
n
X

1=i1<<(imax�2)

�i1i2...(imax�2)

n
Y

h 6=i1i2...(imax�2)

Dh

+ · · · · · · · · ·

+
n
X

1=i1<i2

�i1i2

n
Y

h 6=i1i2

Dh

+
n
X

1=i1

�i1

n
Y

h 6=i1

Dh

+Q;

n
Y

h=1

Dh , (2.22)

Ii1···in =
Ni1···in

Di1Di2 · · ·Din
=

n
X

1=i1<<imax

�i1i2...imax

Di1Di2 · · ·Dimax

+
n
X

1=i1<<imax�1

�i1i2...imax�1

Di1Di2 · · ·Dimax�1

+
n
X

1=i1<<imax�2

�i1i2...imax�2

Di1Di2 · · ·Dimax�2

· · · · · · · · ·

+
n
X

1=i1<i2

�i1i2

Di1Di2

+
n
X

1=i1

�i1

Di1

+Q; (2.23)

Ii1···in =
n
X

1=i1<<imax

�i1i2...imax

Di1Di2 · · ·Dimax

+
n
X

1=i1<<imax�1

�i1i2...imax�1

Di1Di2 · · ·Dimax�1

+
n
X

1=i1<<imax�2

�i1i2...imax�2

Di1Di2 · · ·Dimax�2

+ · · · · · ·+
n
X

1=i1<i2

�i1i2

Di1Di2
+

n
X

1=i1

�i1

Di1
+Q;(2.24)
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Multi-(particle)-pole decomposition 
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Parametric form of the residues is
process independent
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The actual values of the coefficients 
in the residues are are process dependent

 Parametric form of the residues
is process independent.
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Knowing the parametric form of residues 
is mandatory!!!

 Parametric form of the residues
is process independent.

 Actual values of the coefficients
is process dependent.

Use your favourite generator, 
(Feynman diagrams, tree-amplitudes, currents,...), 
and sample I(q’s) as many time as the 
number of unknown coefficients
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Problem: what is the form of the residues?

“find the right variables encoding the cut-structure”



Cuts and Residues

The most general numerator of one-loop amplitudes N (q̄, ✏) can be thought as composed

of three terms,

N (q̄, ✏) = N0(q, µ
2) + ✏N1(q, µ

2) + ✏

2
N2(q, µ

2). (2.3)

The coe�cients of this ✏-expansion, N0, N1 and N2, are functions of q⌫ and µ

2. In the

following discussion we will denote by N any element of the set {N1, N2, N3}.
The numerator N(q, µ2) can be expressed in terms of denominators D

i

, as follows

N(q, µ2) =
n�1
X

i<<m

�
ijk`m

(q, µ2)
n�1
Y

h 6=i,j,k,`,m

D

h

+
n�1
X

i<<`

�
ijk`

(q, µ2)
n�1
Y

h 6=i,j,k,`

D

h

+

+
n�1
X

i<<k

�
ijk

(q, µ2)
n�1
Y

h 6=i,j,k

D

h

+
n�1
X

i<j

�
ij

(q, µ2)
n�1
Y

h 6=i,j

D

h

+
n�1
X

i

�
i

(q, µ2)
n�1
Y

h 6=i

D

h

, (2.4)

where i << m is the lexicographic ordering i < j < k < ` < m. The functions �(q, µ2)

are polynomials in the components of q and in µ

2. The decomposition (2.4) expose the

multi-pole nature of the integrand

A(q, µ2) =
n�1
X

i<<m

�
ijk`m

(q, µ2)

D

i

D

j

D

k

D

`

D

m

+
n�1
X

i<<`
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ijk`
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D
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D
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D

k
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`
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n�1
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�
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D
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k

+

+
n�1
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�
ij

(q, µ2)

D

i

D

j

+
n�1
X

i

�
i

(q, µ2)

D

i

. (2.5)

For each cut (ijk · · · ), D
i

= D

j

= D

k

= · · · = 0, a basis of four massless vectors

E(ijk··· ) =
n

e

(ijk··· )
1 , e

(ijk··· )
2 , e

(ijk··· )
2 , e

(ijk··· )
4

o

, (2.6)

such that
⇣

e

(ijk··· )
i

⌘2
= 0 , e

(ijk··· )
1 · e(ijk··· )3 = e

(ijk··· )
1 · e(ijk··· )4 = 0 ,

e

(ijk··· )
2 · e(ijk··· )3 = e

(ijk··· )
2 · e(ijk··· )4 = 0 , e

(ijk··· )
1 · e(ijk··· )2 = �e

(ijk··· )
3 · e(ijk··· )4 = 1 .
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• Loop momentum decomposition

q + p

i

=
4

X

↵=1

x

↵

e

(ijk··· )
↵

, x

↵

= (q + p

i

) · e(ijk··· )
↵

(2.7)

cut external (p
i

) auxiliary (v
i

) �-variables (ISP’s)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

cut/legs basis �-variables (ISP’s)

external (p
i

) auxiliary (v
i

)

5 4 0 µ

2

4 3 1 µ

2
, q · v1
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2
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2 1 3 µ

2
, q · v
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(i = 1, . . . , 3)
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2
, q · v

i

(i = 1, . . . , 4)

• ISP’s = Irreducible Scalar Products:

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical fitting

• the 5-point residue doesn’t show up

• the 4-point residue doesn’t show up

• �R = reduced polynomial (⇢ �)
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 4-vectors vs components 

 cut-associated basis

use independent external momenta + auxiliary orthogonal complement:



Problem: what is the form of the residues?

2.1 for CERN
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• ISP’s = Irreducible Scalar Products:

– components of the loop momenta which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s
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– q-components which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical sampling

L.H.S.|
known

= R.H.S.|
unknown coe↵s.

• the 5-point residue doesn’t show up

– 5 –



Integrand-Reduction beyond One-Loop

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011,2012)

Zhang (2012)

Mirabella, Ossola, Peraro, & P.M (2012)

Kleiss, Malamos, Papadopoulos, Verheynen (2012)



Multi-Loop Scattering Amp’s 
from Multivariate Polynomial Division



Ideal

Groebner Basis

Multivariate Polynomial Division
Zhang (2012); 
Mirabella, Ossola, Peraro, & P.M. (2012) 

2

integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =





!
∑

j=1

αj qj + pi





2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.
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In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
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functions of the type
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propagator can be written as follows:
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−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
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is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
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In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
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We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
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on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:
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The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{
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∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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nators of any Feynman integrand, as multivariate poly-
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cut, namely modulo a set of polynomial vanishing
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with (n − 1) denominators which should undergo
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when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.
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zeros of the elements of Ji1···in are exactly the common
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The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
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functions of the type
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say z ≡ (z1, . . . z4!), i.e.
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}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of

Quotients
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.
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peating the procedure described in Eqs. (3)-(6). In this
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be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
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The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
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grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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• ISP’s = Irreducible Scalar Products:

– components of the loop momenta which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

Ii1···in =

n
X

=1

Ii1···i�1i+1···in +
�i1···in

Di1 · · ·Din
(2.25)
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Reducibility Criterion

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0. The number m of elements of the Gröbner basis is the cardinality of
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basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem (Thm. 1, Ch. 4

of [?]),

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)

for some ! 2 P [z]. Irrespective of the monomial order, a (reduced) Gröbner basis is

G = {g1} = {1}. Eq. (2.5) becomes

Ni1···in(z) = Ni1···in(z)⇥ 1 2 Ji1···in , (2.9)

thus Ii1···in is reducible.
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Plugging Eq. (2.7) in Eq. (2.3), we get a non-homogeneous recurrence relation for the

n-denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (2.8)

According to Eq. (2.8), Ii1···in is expressed in terms of (n− 1)-denominator integrands,

Ii1···iκ−1iκ+1in =
Ni1···iκ−1iκ+1in

D1 · · ·Diκ−1Diκ+1 · · ·Din

. (2.9)

The non-homogeneous term contains the remainder of the division (2.5). By construction,

it contains only irreducible monomials with respect to Gi1···in , and it is identified with the

residue of the cut (i1 . . . in).

The integrands Ii1···iκ−1iκ+1···in can be decomposed repeating the procedure described in

Eqs. (2.3)-(2.5). In this case the polynomial division of Ni1···iκ−1iκ+1···in has to be performed

modulo the Gröbner basis of the ideal Ji1···iκ−1iκ+1···in , generated by the corresponding

(n − 1) denominators. The complete multi-pole decomposition of the integrand Ii1···in is

obtained by successive iterations of Eqs. (2.3)-(2.5).

2.2 Reducibility criterion

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point

integrands, i.e. when the numerator can be written as a linear combination of denominators.

Eqs. (2.5) and (2.6), allow to characterize the reducibility of the integrands:

Proposition 2.1 The integrand Ii1···in is reducible iff the remainder of the division modulo

a Gröbner basis vanishes, i.e. iff Ni1···in ∈ Ji1···in .

A direct consequence of the Proposition 2.1 is

Proposition 2.2 An integrand Ii1···in is reducible if the cut (i1 · · · in) leads to a system of

equations with no solution.

Indeed if the system of equations Di1(z) = · · · = Din(z) = 0 has no solution, the weak Null-

stellensatz theorem ensures that 1 ∈ Ji1···in , i.e. Ji1···in = P [z]. Therefore any polynomial

in z is in the ideal. Any numerator function Ni1···in is polynomial in the integration mo-

menta, thus Ni1···in ∈ Ji1···in and it can be expressed as a combination of the denominators

Di1(z), . . . ,Din(z) [44,49]. In this case Eq. (2.8) becomes

Ii1···in =
n
∑

κ=1

Ii1···iκ−1iκ+1in . (2.10)

The reducibility criterion and the recurrence relation (2.8) are the two mathematical

properties underlying the integrand decomposition of scattering amplitudes, at any order

in perturbation theory. If the n denominators cannot vanish simultaneously, the corre-

sponding integral is reducible, namely it can be written in terms of integrands with (n−1)
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• ISP’s = Irreducible Scalar Products:

– components of the loop momenta which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

Ii1···in =

n
X

=1

Ii1···i�1i+1···in +
�i1···in

Di1 · · ·Din
(2.24)

In this case, the system is over-constrained, namely the number n of equations is larger

than the number of indeterminates. The n propagators cannot vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.25)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =

n
X

=1

w(z)Di(z) 2 Ji1···in , (2.26)

for some ! 2 P [z]. Irrespective of the monomial order, a (reduced) Gröbner basis is

G = {g
1

} = {1}. Eq. (??) becomes

Ni1···in(z) = Ni1···in(z)⇥ 1 2 Ji1···in , (2.27)

thus Ii1···in is reducible.
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One-Loop Integrand Reduction

2.2 Integrand Recursion Formula

After substituting Eqs. (2.5) and (2.6) in Eq. (2.3), we get a non-homogeneous recurrence

relation for the n-denominator integrand,

Ii1···in =
kX

=1

Ii1···i�1i+1in +
�i1···in

Di1 · · ·Din
. (2.10)

According to Eq. (2.10), Ii1···in is expressed in terms of integrands, Ii1···i�1i+1in , with (n�
1) denominators. Ii1···i�1i+1in are obtained from Ii1···in by pinching the i-th denominator.

The numerator of the non-homogeneous term is the remainder �i1···in of the division (2.5).

By construction, it contains only irreducible monomials with respect to Gi1···in , thus it is

identified with the residue at the cut (i1 . . . in).

The integrands Ii1···i�1i+1···in can be decomposed repeating the procedure described in

Eqs. (2.3)-(2.5). In this case the polynomial division of Ni1···i�1i+1···in has to be performed

modulo the Gröbner basis of the ideal Ji1···i�1i+1···in , generated by the corresponding

(n� 1) denominators.

The complete multi-pole decomposition of the integrand Ii1···in is achieved by successive

iterations of Eqs. (2.3)-(2.5). Like an Erathostene’s sieve, the recursive application of

Eqs. (2.5) and (2.10) extracts the unique structures of the remainders �’s. The procedure

naturally stops when all cuts are exhaused, and no denominator is left, leaving us with the

integrand reduction formula.

If all quotients of the last divisions vanish, the integrand is cut-constructible, i.e. it

can be determined by sampling the numerator on the solutions of the cuts. If the quotients

do not vanish, they give rise to non-cut-constructible terms, i.e. terms vanishing at every

multi-pole. They can be reconstructed by sampling the numerator away from the cuts.

Non-cut-constractible terms may occur in non-renormalizable theories, where the rank of

the numerator is higher than the number of denominators [?].

The Proposition 2.2 and the recurrence relation (2.10) are the two mathematical prop-

erties underlying the integrand decomposition of any scattering amplitudes. The polyno-

mial form of each residue is univocally derived from the division modulo the Gröbner basis

of the corresponding cut.

3. One-loop integrand decomposition

In this section we decompose an n-point integrand I0···(n�1) of rank-n with n > 5, using

the procedure described in Section 2. The reduction of higher-rank and/or lower-point

integrands proceeds along the same lines.

In d-dimensions, the generic n-point one-loop integrand reads as follows:

I0···(n�1) ⌘
N0···(n�1)(q, µ

2)

D0(q, µ2) · · ·Dn�1(q, µ2)
. (3.1)

We closely follow the notation of [?, ?]. Objects living in d = 4� 2✏ are denoted by a bar,

e.g. /̄q = /q + /µ and q̄

2 = q

2 � µ

2.
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For later convenience, for each Ii1···ik we define a basis E(i1···ik) = {ei}i=1,...,4.

If k � 5, then ei = ki, where ki are four external momenta.

If k < 5, then ei are chosen to fulfill the following relations:

e

2
1 = e

2
2 = 0 , e1 · e2 = 1 ,

e

2
3 = e

2
4 = �k4 , e3 · e4 = �(1� �k4) . (3.2)

In terms of E(i1···ik), the loop momentum can be decomposed as,

q

µ = �p

µ
i1
+ x1 e

µ
1 + x2 e

µ
2 + x3 e

µ
3 + x4 e

µ
4 . (3.3)

Accordingly, each numerator Ni1···ik can be treated as a rank- k polynomial in z ⌘
(x1, x2, x3, x4, µ2),

Ni1···ik =
X

~j2J(k)

↵~j z
j1
1 z

j2
2 z

j3
3 z

j4
4 z

j5
5 , (3.4)

with J(k) ⌘ {~j = (j1, . . . , j5) : j1 + j2 + j3 + j4 + 2 j5  k}.

Step 1. Since n > 5, the Proposition 2.2 guarantees that N0···n�1 is reducible, and, by

iteration, it can be written as a linear combination of 5-point integrands Ii1···i5 .

Step 2. The numerator of each Ii1···i5 is a rank-5 polynomial in z, cfr. Eq. (3.4). We

define the ideal Ji1···i5 , and compute the Gröbner basis Gi1···i5 = (g1, . . . , g5), which is found

to have a remarkably simple form:

gi(z) = ci + zi , (i = 1, . . . , 5) . (3.5)

We observe that each gi depends linearly on the i-th component of z.

The division of Ni1···i5 modulo Gi1···i5 , see Eq.(2.5), gives a constant remainder,

�i1···i5 = c0 . (3.6)

The term �i1···i5 in Eq. (2.6) is,

�i1···i5 =
5X

=1

Ni1···i�1i+1···i5(z)Di(z) ,

where Ni1···i�1i+1···i5 are the numerators of the 4-point integrands, Ii1···i�1i+1···i5 , ob-

tained by removing the i-th denominator.

Step 3. For each Ii1···i4 , the numeratorNi1···i4 is a rank-4 polynomial in z. The Gröbner

basis Gi1···i4 of the ideal Ji1···i4 contains four elements. Dividing Ni1···i4 modulo Gi1···i4 , we

obtain the remainder. The latter depends on µ

2 and on the fourth component of the loop

momentum q in the basis E(i1···i4),

�i1···i4 = c0 + c1x4

+ µ

2(c2 + c3x4 + µ

2
c4) . (3.7)
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basis Gi1···i4 of the ideal Ji1···i4 contains four elements. Dividing Ni1···i4 modulo Gi1···i4 , we

obtain the remainder. The latter depends on µ

2 and on the fourth component of the loop

momentum q in the basis E(i1···i4),

�i1···i4 = c0 + c1x4

+ µ

2(c2 + c3x4 + µ

2
c4) . (3.7)

– 6 –

For later convenience, for each Ii1···ik we define a basis E(i1···ik) = {ei}i=1,...,4.

If k � 5, then ei = ki, where ki are four external momenta.

If k < 5, then ei are chosen to fulfill the following relations:

e

2
1 = e

2
2 = 0 , e1 · e2 = 1 ,

e

2
3 = e

2
4 = �k4 , e3 · e4 = �(1� �k4) . (3.2)

In terms of E(i1···ik), the loop momentum can be decomposed as,

q

µ = �p

µ
i1
+ x1 e

µ
1 + x2 e

µ
2 + x3 e

µ
3 + x4 e

µ
4 . (3.3)

Accordingly, each numerator Ni1···ik can be treated as a rank- k polynomial in z ⌘
(x1, x2, x3, x4, µ2),

Ni1···ik =
X

~j2J(k)

↵~j z
j1
1 z

j2
2 z

j3
3 z

j4
4 z

j5
5 , (3.4)

with J(k) ⌘ {~j = (j1, . . . , j5) : j1 + j2 + j3 + j4 + 2 j5  k}.

Step 1. Since n > 5, the Proposition 2.2 guarantees that N0···n�1 is reducible, and, by

iteration, it can be written as a linear combination of 5-point integrands Ii1···i5 .

Step 2. The numerator of each Ii1···i5 is a rank-5 polynomial in z, cfr. Eq. (3.4). We
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Ji1···i5 , and compute the Gröbner basis Gi1···i5 = (g1, . . . , g5), which is found to have a

remarkably simple form:

gi(z) = ci + zi , (i = 1, . . . , 5) . (3.5)

We observe that each gi depends linearly on the i-th component of z.

The division of Ni1···i5 modulo Gi1···i5 gives a constant remainder,

�i1···i5 = c0 . (3.6)

The term �i1···i5 in Eq. (2.6) is,

�i1···i5 =
5X

=1

Ni1···i�1i+1···i5(z)Di(z) ,

where Ni1···i�1i+1···i5 are the numerators of the 4-point integrands, Ii1···i�1i+1···i5 , ob-

tained by removing the i-th denominator.

Step 3. For each Ii1···i4 , the numeratorNi1···i4 is a rank-4 polynomial in z. The Gröbner
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The term �i1···i4 ,

�i1···i4 =
4X

=1

Ni1···i�1i+1···i4(z)Di(z) ,

contains the numerators of 3-point integrands Ii1···i�1i+1···i4 .

Step 4. The Gröbner basis Gi1i2i3 is formed by three elements, and is used to divide

Ni1i2i3 . The remainder �i1i2i3 is polynomial in µ

2 and in the third and fourth components

of q in the basis E(i1i2i3),

�i1i2i3 = c0 + c1x3 + c2x
2
3 + c3x

3
3

+ c4x4 + c5x
2
4 + c6x

3
4

+ µ

2(c7 + c8x3 + c9x4) . (3.8)

The term �i1i2i3 generates the rank-2 numerators of the 2-point integrands Ii1i2 , Ii1i3 , and
Ii2i3 .

Step 5. The remainder of the division of Ni1i2 by the two elements of Gi1i2 is:

�i1i2 = c0 + c1x2 + c2x3 + c3x4

+ c4x
2
2 + c5x

2
3 + c6x

2
4 + c7x2x3

+ c9x2x4 + c9µ
2
. (3.9)

It is polynomial in µ

2 and in the last three components of q in the basis E(i1i2). The

reducible term of the division, �i1i2 , generates the rank-1 integrands, Ii1 , and Ii2 .

Step 6. The numerator of the 1-point integrands is linear in the components of the

loop momentum in the basis E(i1),

Ni1 = �0 +
4X

j=1

�j xj .

The only element of the Gröbner basis Gi1 is Di1 , which is quadratic in z. Therefore the

division modulo Gi1 , leads to a vanishing quotient, hence

Ni1 = �i1 . (3.10)

Step 7. Collecting all the remainders computed in the previous steps, we obtain the

complete decomposition of I0···n�1 in terms of its multi-pole structure

I0···n�1 =
5X

k=1

0

@
n�1X

1=i1<...<ik

�i1···ik
Di1 · · ·Dik

1

A
. (3.11)

Eq. (3.11) reproduces the well-known one-loop d-dimensional integrand decomposition for-

mula [?, ?, ?, ?, ?, ?].

We remark that the basis E(i1···ik), defined in Eq.(3.3) and used for decomposing the

integration momentum q, depend only on the external momenta of diagram associate to

the cut, eventually complemented by orthogonal elements. Therefore, E(i1···ik) can be used

as well to decompose the integration momenta of multi-loop diagrams [?].
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Step 4. The Gröbner basis Gi1i2i3 is formed by three elements, and is used to divide

Ni1i2i3 . The remainder �i1i2i3 is polynomial in µ

2 and in the third and fourth components

of q in the basis E(i1i2i3),

�i1i2i3 = c0 + c1x3 + c2x
2
3 + c3x

3
3

+ c4x4 + c5x
2
4 + c6x

3
4

+ µ

2(c7 + c8x3 + c9x4) . (3.8)

The term �i1i2i3 generates the rank-2 numerators of the 2-point integrands Ii1i2 , Ii1i3 , and
Ii2i3 .

Step 5. The remainder of the division of Ni1i2 by the two elements of Gi1i2 is:

�i1i2 = c0 + c1x2 + c2x3 + c3x4

+ c4x
2
2 + c5x

2
3 + c6x

2
4 + c7x2x3

+ c9x2x4 + c9µ
2
. (3.9)

It is polynomial in µ

2 and in the last three components of q in the basis E(i1i2). The

reducible term of the division, �i1i2 , generates the rank-1 integrands, Ii1 , and Ii2 .

Step 6. The numerator of the 1-point integrands is linear in the components of the

loop momentum in the basis E(i1),

Ni1 = �0 +
4X

j=1

�j xj .
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which reproduces the well-known one-loop d-dimensional integrand decomposition formula

We remark that the basis E(i1···ik), defined in Eq.(3.3) and used for decomposing the

integration momentum q, depend only on the external momenta of diagram associate to

the cut, eventually complemented by orthogonal elements. Therefore, E(i1···ik) can be used

as well to decompose the integration momenta of multi-loop diagrams [?].
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ü Generic rank3-Polynomial in 5 variables
Vars

8x@1.D, x@2.D, x@3.D, x@4.D, m2<

Num1 = H
c@0D +
Sum@c@i1D * Vars@@i1DD, 8i1, 1, Length@VarsD<D

L

c@0D + m2 c@5D + c@1D x@1.D + c@2D x@2.D + c@3D x@3.D + c@4D x@4.D

Num1 = Num1 êê. 8
m2 Ø 0

<

c@0D + c@1D x@1.D + c@2D x@2.D + c@3D x@3.D + c@4D x@4.D

Length@MonomialList@Num1, VarsDD

5

ü 2-point residue
resto = PolynomialReduce@Num1, GB, Vars, MonomialOrder Ø LexicographicD@@2DD;

Length@MonomialList@resto, VarsDD

5

Nresto = resto êê N;
Nresto = Nresto êê Expand;
Nresto = Nresto êê Chop;
Nresto = Nresto êê N;
Nresto

c@0.D + c@1.D x@1.D + c@2.D x@2.D + c@3.D x@3.D + c@4.D x@4.D

quoz = PolynomialReduce@Num1, GB, Vars, MonomialOrder Ø LexicographicD@@1DD

80.<

In[208]:= ?? GroebnerBasis

GroebnerBasis@8poly1, poly2,…<, 8x1, x2,…<D gives a
list of polynomials that form a Gröbner basis for the set of polynomials polyi.

GroebnerBasis@8poly1, poly2,…<, 8x1, x2,…<, 8y1, y2,…<D finds a Gröbner
basis in which the yi have been eliminated.  à

Attributes@GroebnerBasisD = 8Protected, ReadProtected<

Options@GroebnerBasisD :=
8CoefficientDomain Ø Automatic, Method Ø Automatic, Modulus Ø 0,
MonomialOrder Ø Lexicographic, ParameterVariables Ø 8<, Sort Ø False, Tolerance Ø 0<

In[209]:= ?? PolynomialReduce

PolynomialReduce@poly, 8poly1, poly2,…<, 8x1, x2,…<D yields
a list representing a reduction of poly in terms of the polyi. The list has the form
88a1, a2,…<, b<, where b is minimal and a1 poly1 + a2 poly2 +… + b is exactly poly.  à

Attributes@PolynomialReduceD = 8Protected<

Options@PolynomialReduceD = 8CoefficientDomain Ø RationalFunctions, Modulus Ø 0,
MonomialOrder Ø Lexicographic, ParameterVariables Ø 8<, Tolerance Ø 0<
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Length@MonomialList@resto, VarsDD

5

Nresto = resto êê N;
Nresto = Nresto êê Expand;
Nresto = Nresto êê Chop;
Nresto = Nresto êê N;
Nresto

c@0.D + c@1.D x@1.D + c@2.D x@2.D + c@3.D x@3.D + c@4.D x@4.D

quoz = PolynomialReduce@Num1, GB, Vars, MonomialOrder Ø LexicographicD@@1DD

80.<

In[208]:= ?? GroebnerBasis

GroebnerBasis@8poly1, poly2,…<, 8x1, x2,…<D gives a
list of polynomials that form a Gröbner basis for the set of polynomials polyi.

GroebnerBasis@8poly1, poly2,…<, 8x1, x2,…<, 8y1, y2,…<D finds a Gröbner
basis in which the yi have been eliminated.  à

Attributes@GroebnerBasisD = 8Protected, ReadProtected<

Options@GroebnerBasisD :=
8CoefficientDomain Ø Automatic, Method Ø Automatic, Modulus Ø 0,
MonomialOrder Ø Lexicographic, ParameterVariables Ø 8<, Sort Ø False, Tolerance Ø 0<

In[209]:= ?? PolynomialReduce

PolynomialReduce@poly, 8poly1, poly2,…<, 8x1, x2,…<D yields
a list representing a reduction of poly in terms of the polyi. The list has the form
88a1, a2,…<, b<, where b is minimal and a1 poly1 + a2 poly2 +… + b is exactly poly.  à

Attributes@PolynomialReduceD = 8Protected<

Options@PolynomialReduceD = 8CoefficientDomain Ø RationalFunctions, Modulus Ø 0,
MonomialOrder Ø Lexicographic, ParameterVariables Ø 8<, Tolerance Ø 0<
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What can we do within this new framework?



The Maximum-Cut Theorem4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .
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IV. THE MAXIMUM-CUT THEOREM

At ! loops, in four dimensions, we define a maximum-
cut as a (4!)-ple cut

Di1 = Di2 = · · · = Di4! = 0 , (23)

which constrains completely the components of the loop
momenta. In four dimensions this implies the presence of
four constraints for each loop momenta. We assume that,
in non-exceptional phase-space points, a maximum-cut
has a finite number ns of solutions, each with multiplicity
one. Under this assumption we have the following

Theorem IV.1 (Maximum cut) The residue at the
maximum-cut is a polynomial paramatrised by ns coeffi-
cients, which admits a univariate representation of degree
(ns − 1).

Proof. Let us parametrize the propagators using 4! vari-
ables z = (z1, . . . z4!). In this parametrization, the solu-
tions of the maximum-cut read,

z(i) =
(

z
(i)
1 , . . . , z

(i)
4!

)

with i = 1, . . . , ns . (24)

Let Ji1···i4! be the ideal generated by the on-shell de-
nominators, Ji1···i4! = 〈Di1 , . . . , Di4!〉 .
According to the assumptions, the number ns of the so-
lutions of (23) is finite, and each of them has multiplicity
one, therefore Ji1···i4! is zero-dimensional [20, 33] and
radical [34] [17]. In this case, the Finiteness Theorem
[17, 20] ensures that the remainder of the division of any
polynomial modulo Ji1···i4! can be parametrised exactly
by ns coefficients.

Moreover, up to a linear coordinate change, we can
assume that all the solutions of the system have distinct

first coordinate z1, i.e. z
(i)
1 $= z

(j)
1 ∀ i $= j. We observe

that Ji1···i4! and z1 are in the Shape Lemma position [19,
20, 25, 26], therefore a Gröbner basis for the lexicographic
order z1 < z2 < · · · < zn is Gi1···i4! = {g1, . . . , g4!}, in
the form



















g1(z) = f1(z1)
g2(z) = z2 − f2(z1)

...
g4!(z) = z4! − f4!(z1)

(25)

The functions fi are univariate polynomials in z1. In
particular f1 is a rank-ns square-free polynomial [25],

f1(z1) =
ns
∏

i=1

(

z1 − z
(i)
1

)

, (26)

i.e. it does not exhibits repeated roots. The multivari-
ate division of Ni1···ı4! modulo Gi1···i4! leaves a remainder
∆i1···i4! which is a univariate polynomial in z1 of degree
(ns−1) [26], in accordance with the Finiteness Theorem.

The maximum-cut theorem ensures that the
maximum-cut residue, at any loop, is completely

FIG. 1. The on-shell diagrams in the picture are exam-
ples of maximum-cuts. The first diagram in the left column
represents the 5ple-cut of the 5-point one-loop dimensionally
regulated amplitude. All the other on-shell diagrams are con-
sidered in four dimensions. For each of them, the general
structure of the residue ∆ (according to the Shape Lemma)
and the corresponding value of ns are provided.

determined by the ns distinct solutions of the cut-
conditions. In particular it can be reconstructed by
sampling the integrand on the solutions of the maximum
cut itself.
At one loop and in (4 − 2ε)-dimensions, the 5-ple

cuts are maximum-cuts. The remarkably simple struc-
ture of the Gröbner basis in Eq. (16) is dictated by the
maximum-cut theorem. Moreover in this case ns = 1,
thus the residue in Eq. (17) is a constant.
The structures of the residues of the maximum cut,

together with the corresponding values of ns, for a set
of one-, two-, and three-loop diagrams are collected in
Figure 1.

The calculations of Sections III and IV have been
carried out using the package S@M [35] and the func-
tions GroebnerBasis and PolynomialReduce of Math-

ematica, respectively needed for the generation of the
Gröbner basis and the polynomial division.

V. CONCLUSIONS

We presented a new algebraic approach, where the
evaluation of scattering amplitudes is addressed by using
multivariate polynomial division, with the components
of the loop-momenta as indeterminates. We found a re-
currence relation to construct the integrand decomposi-
tion of arbitrary scattering amplitudes, independently of
the number of loops. The recursive algorithm is based
on the Weak Nullstellensatz Theorem and on the divi-
sion modulo the Gröbner basis associated to all possi-
ble multi-particle cuts. Using this technique, we red-
erived the well-known one-loop integrand decomposition
formula. Finally, by means of the Finiteness Theorem
and of the Shape Lemma, we proved that the residue at
the maximum-cuts is parametrised exactly by a number
of coefficients equal to the number of solutions of the cut
itself.



2-loop 5-point amplitudes in N=4 SYM
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FIG. 2: The six diagrams that appear in the five-point two-loop amplitudes.

respect to permutations of any four legs that connect to a box subgraph. This follows from

the kinematic Jacobi relations, since, triangles are obtained from the antisymmetrization of

any two legs in a box diagram. The absence of triangles is then equivalent to requiring total

symmetry of the box numerators. This explains why the numerator of diagram (B) in fig. 1

is totally symmetric in legs 3, 4 and 5. And, for two multiloop diagrams, which only differ

by the ordering of legs of a box subgraph, it follows that they have the same numerator. At

two loops this property implies the following constraints on the numerators:

N (a) = N (b), N (d) = N (e) = N (f) . (4.2)

This can easily be seen in fig. 2: diagram (a) and (b) only differ by the edge connections of the

rightmost one-loop subgraph, which is a box. Similarly, (d) differs from (e) by connections

in the rightmost one-loop subgraph, and (d) differs from (f) by connections in the leftmost

one-loop subgraph, both are boxes.

Further, the remaining undetermined numerators N (a), N (c) and N (d) are interlocked by

the two kinematic Jacobi relations,

N (c)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 5, 4, 3; p, k3,4 − q)−N (a)(5, 4, 3, 1, 2; k5 + q, k1,2 − p) ,

N (d)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 3, 4, 5; p, q)−N (a)(2, 1, 3, 4, 5; p, q) , (4.3)
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To determine the general structure of ∆12345678, we follow the strategy illustrated in

Ref. [50]. Using Eqs.(2.20,2.21), the integration momenta k and q can be decomposed by

means of two bases of four massless vectors, {τi} and {ei} respectively. We choose

This is NOT the selection of Pierpaolo. We should decide what to put.

Probably the best option is using the same basis for both momenta.

rµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (3.4)

pµ0 = 0µ , τµ1 = pµ3 , τµ2 = pµ4 . (3.5)

Then, one builds the massless vectors e3 and e4 from e1 and e2

eµ3 =
〈e1|γµ|e2]

2
, eµ4 =

〈e2|γµ|e1]

2
, (3.6)

Analogous expressions allow to determine τ3 and τ4, starting from τ1 and τ2.

When the loop momenta are expressed in these bases as

qµ = −rµ0 +
4

∑

i=1

yi τ
µ
i , kµ = −pµ0 +

4
∑

i=1

xi e
µ
i , (3.7)

the numerator function and all denominators are polynomial in the components of the

loop momenta {x1, x2, x3, x4, y1, y2, y3, y4}. Conversely, each component is connected to a

specific scalar product between integration momenta and elements of each basis, i.e. for

example

x1 = (k · e2) + (p0 · e2), y1 = (q · τ2) + (r0 · τ2) , (3.8)

which for the choice of bases of Eqs. (3.5-3.5) become

x1 = (k · p2), y1 = (q · p4) . (3.9)

q

k

1

2
3

4

5

Figure 2: 5-point 8fold-cut ∆12345678.

In order to get the most general algebraic expression for the form of the residue, we

employ the most general renormalizable numerator function. For simplicity we parametrize

it directly in the components of the loop momenta {x1, x2, x3, x4, y1, y2, y3, y4}. Such nu-

merator has the form:

N (x1, x2, x3, x4, y1, y2, y3, y4) =
∑

!j∈J(k)

α!j x
j1
1 x j2

2 x j3
3 x j4

4 y j5
1 y j6

2 y j7
3 y j8

4 , (3.10)

with J(k) being the set of values for the exponents compatible with the renormalizability

condition. [can we cast this statement in a better form?]
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Residues

Edo

1 Planar Diagram

The propagators are labelled as in the two-loop paper. The basis as well
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The loop momenta are expressed in these bases
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1

• The global (N = N)-test ensures the correctness of the overall integrand-decomposition.

Accordingly, after the determination of all polynomial coefficients appearing in the

r.h.s. of Eq.(2.5), the identity between l.h.s. and r.h.s. of Eq.(2.5) must hold for

arbitrary values of the loop variables. One can therefore verify it: either i) at the

end of the reduction procedure, or ii) during the reduction, in order to rule out any

further contribution possibly coming from sub-diagram MI’s. In the latter case, the

failure of the test indicates that other contributions are missing, and the reduction

should continue for their detection.

In the next sections we will present a series of examples that illustrate the integrand-

reduction algorithm explicitly. The required spinor-algebra has been implemented in Math-

ematica, using the package S@M [46].

3. The MHV Pentabox in N = 4 SYM

In this section we apply the integrand-reduction to the decomposition in terms of MI’s of

the 5-point two-loop pentabox in N = 4 SYM, depicted in Fig.1. Following the notation

employed in Ref. [50], we can write the general expression for its integrand as

I1···8 ≡
N1···8(q, k)

D1(q, k) · · ·D8(q, k)
, (3.1)

where k and q are the integration momenta. The definitions of the denominators Di are

provided in Fig.1.

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

Figure 1: 5-point pentabox diagram.

The expression for the integrand of the pentabox in N = 4 SYM has been presented

in Ref. [47] in the form

N1···8(q, k) = . . . . (3.2)

3.1 Five-point Eightfold-Cut

The residue of the 8fold-cut is defined as,

∆12345678(q, k) = Res12345678
{

N1···8(q, k)
}

. (3.3)
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Integrand

Momentum basis

Generic Numerator

Polynomial Division

The n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to g1 = . . . = gm = 0. The

multivariate division of Ni1···in modulo Gi1···in leads to

Ni1···in(z) = Γi1···in +∆i1···in(z) , (2.5)

where Γi1···in =
∑m

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial ∆i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed. The term Γi1···in belongs to the ideal Ji1···in , thus it can be expressed in

terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ(z) . (2.6)

The explicit form ofNi1···iκ−1iκ+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators. Using Eqs. (2.5) and (2.6), we cast the numerator in

the suggestive form

Ni1···in(z) =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ(z) +∆i1···in(z) . (2.7)

Plugging Eq. (2.7) in Eq. (2.3), we get a non-homogeneous recurrence relation for the

n-denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (2.8)

According to Eq. (2.8), Ii1···in is expressed in terms of (n− 1)-denominator integrands,

Ii1···iκ−1iκ+1in =
Ni1···iκ−1iκ+1in

D1 · · ·Diκ−1Diκ+1 · · ·Din

. (2.9)

The non-homogeneous term contains the remainder of the division (2.5). By construction,

it contains only irreducible monomials with respect to Gi1···in , and it is identified with the

residue of the cut (i1 . . . in).

The integrands Ii1···iκ−1iκ+1···in can be decomposed repeating the procedure described in

Eqs. (2.3)-(2.5). In this case the polynomial division of Ni1···iκ−1iκ+1···in has to be performed

modulo the Gröbner basis of the ideal Ji1···iκ−1iκ+1···in , generated by the corresponding

(n − 1) denominators. The complete multi-pole decomposition of the integrand Ii1···in is

obtained by successive iterations of Eqs. (2.3)-(2.5).

2.2 Reducibility criterion

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point

integrands, i.e. when the numerator can be written as a linear combination of denominators.

Eqs. (2.5) and (2.6), allows to characterize the reducibility of the integrands:
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2-Loop Integrand Decomposition Formula (4D)

Theorem 2.1 (Maximum cut) The residue at the maximum-cut is a polynomial para-

matrised by ns coefficients, which admits a univariate representation of degree (ns − 1).

The maximum-cut theorem guarantees that the maximum number of terms needed to

parametrize the residue of the maximum cut is exactly equal to ns. Therefore it guarantees

the full reconstruction of the residue by sampling the integrand on the ns solutions of the

maximum cut. The Theorem 2.1 generalizes at any loop the simplicity of the one-loop

maximum cuts [2, 5]. Indeed in d (4) dimensions, the residue of the quintuple (quadruple)

cut is parametrized by 1 (2) coefficient(s) and can be fit by sampling on the single (2)

solution(s) of the cut itself.

2.4 Two-loop integrand reduction

In 4 dimensions the generic 2-loop n-denominator amplitude is

An =

∫

d4q

∫

d4k In(q, k) =

∫

d4q

∫

d4k
N1···n(q, k)

D1 D2 · · ·Dn
,

Di = (α1,iq + α2,ik + pi)
2 −m2

i (2.11)

In the following we will consider diagrams where each denominator Di appears only once.

In particular this implies that any integrand with more then eight propagators is in the

position of Proposition 2.2 and thus it is reducible1. Therefore it can be expressed in

terms of integrands with eight or less denominators. The recursive procedure described in

Section 2.2 leads to the following multipole decomposition

In =
n
∑

i1<<i8=1

∆i1···i8

Di1 · · ·Di8

+
n
∑

i1<<i7=1

∆i1···i7

Di1 · · ·Di7

+ · · ·+
n
∑

i1<i2=1

∆i1i2

Di1Di2

+
n
∑

i=1

∆i

Di
+Q∅ .(2.12)

where ia << ib stands for a lexicographic order ia < ia+1 < . . . < ib−1 < ib. Equivalently,

the numerator decomposition formula reads,

N1···n =
n
∑

i1<<i8=1

∆i1···i8

n
∏

j "=i1,...,i8

Dj +
n
∑

i1<<i7=1

∆i1···i7

n
∏

j "=i1,...,i7

Dj + · · ·+

+
n
∑

i1<i2=1

∆i1i2

n
∏

j "=i1,i2

Dj +
n
∑

i=1

∆i

n
∏

j "=i

Dj +Q∅

n
∏

j=1

Dj . (2.13)

The residue ∆i1···ik is obtained from the corresponding rank ri1···ik integrand Ii1···ik using

the following procedure

1At two loops and in 4 dimensions every diagram with more than eight denominators is reducible. Indeed

a generic diagram can have only one denominator appearing twice. It corresponds to a self energy insertion

in a one loop topology.[Edo: This is the crucial point, if this is not true the proof is not valid ]. If the

number of denominator is ≥ 10 we always have 9 independent denominators and the cut is impossible. If

we have 9 denominators the one loop topology gets 7 or 6 independent denominators (7 if the self energy

insertion is a snail, 6 otherwise). Therefore the cut of the momentum flowing in the one loop topology is

impossible.
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The PentaBox diagram in N=4 SYM

By using these coefficients in the polynomial expression in Eq.(3.17) we verify that the

local-(N = N) test is fulfilled. In practice, we verify the equivalence of Eq.(3.16) and the

reconstructed polynomial Eq.(3.17) when evaluated in any solution of the 7fold-cut other

than the ones used to determine the coefficients.

Notice that in this case the coefficients c1234567,i (i = 1, . . . , 4) are non-vanishing, but

they do not affect the integrated result, because they multiply spurious integrals that

vanish upon integration. Nevertheless their presence is important for the completeness of

the polynomial expression in Eq.(3.17).

4. The MHV Pentabox in N = 4 SYM

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

Figure 4: 5-point pentabox diagram.

In the previous two examples we have discussed the 7fold-cut of a 4-point two-loop

amplitude. In this section we apply the integrand-reduction to the decomposition in terms

of MI’s of the 5-point two-loop pentabox in N = 4 SYM, shown in Fig.4. The expression

for the pentabox-integrand has been given in a very compact form in Ref. [46]. The

decomposition involves three types of contributions, coming from: a 5-point 8fold-cut, two

4-point 7fold-cuts, and two 5-point 7fold-cuts.

4.1 Five-point Eightfold-Cut

q

k

1

2
3

4

5

Figure 5: 5-point 8fold-cut ∆12345678.
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In the previous two examples we have discussed the 7fold-cut of a 4-point two-loop

amplitude. In this section we apply the integrand-reduction to the decomposition in terms

of MI’s of the 5-point two-loop pentabox in N = 4 SYM, shown in Fig.4. The expression

for the pentabox-integrand has been given in a very compact form in Ref. [46]. The

decomposition involves three types of contributions, coming from: a 5-point 8fold-cut, two

4-point 7fold-cuts, and two 5-point 7fold-cuts.
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In the previous two examples we have discussed the 7fold-cut of a 4-point two-loop

amplitude. In this section we apply the integrand-reduction to the decomposition in terms

of MI’s of the 5-point two-loop pentabox in N = 4 SYM, shown in Fig.4. The expression

for the pentabox-integrand has been given in a very compact form in Ref. [46]. The

decomposition involves three types of contributions, coming from: a 5-point 8fold-cut, two

4-point 7fold-cuts, and two 5-point 7fold-cuts.
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Figure 5: 5-point 8fold-cut ∆12345678.
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kq

1
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4

3

5

Figure 6: 5-point 7fold-cut ∆1234568

where one of the on-shell cut-conditions imposes a non-linear relation among x4 and y3,

which can be implicitly written as x4 = x4(y3). We choose y3, namely the component of k

along e3, as the variable parametrizing the infinite set of solutions of the 7fold-cut.

Residue. The residue of this 7fold-cut is defined as,

∆1234568(q, k) = Res1234568

{

N(q, k)− ∆12345678(q, k)

D7

}

. (4.8)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(4.4).

To find the polynomial expression of ∆1234568, we use the following criteria.

1. Diagram topology and Vector basis. We observe that this 5-point diagram depends on

four external momenta and, as in the pentabox case, its integrand does not contain

any spurious ISP.

2. Irreducible Scalar Products. The ISP’s which can be formed by the loop variables

and the external momenta can be chosen to be (q · p1), (q · p2), (k · p3), (k · p4). Due

to the explicit expression of the on-shell solutions, on the cut, one has

(q · p1) → (q(7) · p1) = −x4(τ4 · p1) , (4.9)

(q · p2) → (q(7) · p2) = −x4(τ4 · p2) , (4.10)

(k · p3) → (k(7) · p3) = y3(e3 · p3) , (4.11)

(k · p4) → (k(7) · p4) = y3(e3 · p4) . (4.12)

Therefore, ∆1234567 is polynomial in x4 and y3, and can be written as

∆1234568(q, k) = c1234568,0 +
r

∑

i=1

c1234568,i (p2 · q)
i +

r
∑

i=1

c1234568,i+r (p3 · k)
i , (4.13)

where r is the maximum rank in the integration momenta.

Coefficients. As by-now understood, the unknowns c1234568,i are found by sampling

Eq.(4.8) and Eq.(4.13) on (2r + 1) solutions of the 7fold-cut. Also in this case we find

that ∆1234568(q, k) is a trivial polynomial, namely just a constant, because only c1234568,0
is non-vanishing.

Let us finally remark that integrands with numerator (p2 · q)i, and (p3 · k)i are non-

vanishing, and would be MI’s. They do not show up in this case because they are multiplied

by null coefficients.
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4.3 Five-point Sevenfold-Cut (ii)

kq − p4

1
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5

Figure 7: 5-point 7fold-cut ∆1234678

This case is specular to the previous one and can be treated by relabeling the external

momenta (1 ↔ 2, 3 ↔ 5). As before only c1234678,0 is non-vanishing, therefore only the

scalar integral contribute.

4.4 Four-point Sevenfold-Cut (i)

kq

1

2

4

3

5

Figure 8: 4-point 7fold-cut ∆1234578

The 7fold-cut in Fig. 8 is equivalent to the ladder case treated in Sec. 3.1. The solutions

of D1 = . . . = D5 = D7 = D8 = 0 can be decomposed according to Eqs.(2.20,2.21), by

using

rµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (4.14)

pµ0 = 0µ , τµ1 = pµ3 , τµ2 = Pµ
45 −

s45
2P45 · τ1

τµ1 . (4.15)

As in Sec. 3.1, the seven on-shell conditions are not sufficient to freeze the loop momenta,

and one component is left over as a free variable. We choose y3, namely the component of

k along e3, as the variable parametrizing the infinite set of solutions.

The residue of the 7fold-cut, D1 = . . . = D5 = D7 = D8 = 0, is defined as,

∆1234578(q, k) = Res1234578

{

N(q, k)−∆12345678(q, k)

D6

}

, (4.16)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(4.4).

The polynomial expression of ∆1234578 is equivalent to the one given in Eq.(3.9), where ωµ
3 ,

defined in Eq.(3.6), must be constructed with the basis vector {ei} used in Eq.(4.15).

We determine the unknown coefficients and find that only c1234578,0 is non-vanishing.
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where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(4.4).
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We determine the unknown coefficients and find that only c1234578,0 is non-vanishing.
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kq − p4
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24

5

Figure 9: 4-point 7fold-cut ∆1235678

4.5 Four-point Sevenfold-Cut (ii)

Also the case in Fig.9 falls in the two-loop 4-point category discussed in Sec. 3.1 and in

the previous section. The solutions of the 7fold-cut, D1 = . . . = D3 = D5 = . . . = D8 = 0,

can be decomposed according to Eqs.(2.20,2.21), with the following definitions:

pµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (4.17)

rµ0 = −pµ4 , τµ1 = pµ5 , τµ2 = Pµ
34 −

s34
2P34 · τ1

τµ1 . (4.18)

Again, we find it convenient to use y3 as free variable to parametrize the infinite set of

solutions.

The residue, defined as

∆1235678(q, k) = Res1235678

{

N(q, k)−∆12345678(q, k)

D4

}

, (4.19)

with ∆12345678(q, k) being the the 8fold-cut polynomial in Eq.(4.4), can be written as in

Eq.(3.9), where ωµ
3 must be replaced by

ωµ
5 =

(p5 · e3)e
µ
4 − (p5 · e4)e

µ
3

e3 · e4
. (4.20)

By polynomial sampling we find that only c1234578,0 is non-vanishing.

4.6 Reconstructed Integrand

Combining the results of the previous sections, the numerator of the planar 5-point pentabox

diagram can be decomposed as,

N(q, k) = ∆12345678(q, k) +

+∆1234568(q, k)D7 +∆1234578(q, k)D6 +

+∆1234678(q, k)D5 +∆1235678(q, k)D4 =

= c12345678,0 + c12345678,1 (q · p1) +

+c1234568,0D7 + c1234578,0D6 +

+c1234678,0D5 + c1235678,0D4 , (4.21)

which corresponds to a decomposition of the integral in terms of six MI’s,
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16 5 Two-loops reduction in N = 4 SYM and N = 8 Supergravity

The numerator is linear in q and independent from k. Therefore it can be parametrized

as

N(q, k) = 2 q · v + ↵ (5.4)

where the vector v and the constant ↵ are given by [1]

v

µ =
1

4

⇣
�12(p

µ
1 � p

µ
2 ) + �23(p

µ
2 � p

µ
3 ) + 2 �45(p

µ
4 � p

µ
5 ) + �13(p

µ
1 � p

µ
3 )
⌘

(5.5)

↵ =
1

4

⇣
2 �12(s45 � s12) + �23(s45 + 3s12 � s13) + 2 �45(s14 � s15) + �13(s12 + s45 � s13)

⌘

(5.6)

where �ij are defined in Ref. [1].

5.1.1 Eightfold-cut

On-shell solutions

We find first the solutions forD1 = . . . = D8 = 0 according to the momentum parametrization

of Eq.s (5.3) with the choice

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.7)

and pq = pk = 0, i.e.

q = x1 p3 + x2 p4 + x3
hp3|�µ|p4]

2
+ x4

hp4|�µ|p3]
2

(5.8a)

k = y1 p1 + y2 p2 + y3
hp1|�µ|p2]

2
+ y4

hp2|�µ|p1]
2

. (5.8b)

The conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3 y4 = 0. The conditions D4 = D5 =

D6 = 0 similarly yield x1 = x2 = x3 x4 = 0. The condition D7 = 0 thus fixes the two solutions

for the loop momentum q

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, (5.9)

which correspond to the cases x4 = 0 and x3 = 0 respectively. Plugging these into the

equation D8 = 0 and choosing either y4 = 0 or y3 = 0 finally yields for each value of q two

solutions for the loop momentum k, making a total of four solutions for the two momenta
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5-point 8fold-cut

By using these coefficients in the polynomial expression in Eq.(3.17) we verify that the

local-(N = N) test is fulfilled. In practice, we verify the equivalence of Eq.(3.16) and the

reconstructed polynomial Eq.(3.17) when evaluated in any solution of the 7fold-cut other

than the ones used to determine the coefficients.

Notice that in this case the coefficients c1234567,i (i = 1, . . . , 4) are non-vanishing, but

they do not affect the integrated result, because they multiply spurious integrals that

vanish upon integration. Nevertheless their presence is important for the completeness of

the polynomial expression in Eq.(3.17).

4. The MHV Pentabox in N = 4 SYM
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D8 = (q + k + p2 + p3)
2
.

Figure 4: 5-point pentabox diagram.

In the previous two examples we have discussed the 7fold-cut of a 4-point two-loop

amplitude. In this section we apply the integrand-reduction to the decomposition in terms

of MI’s of the 5-point two-loop pentabox in N = 4 SYM, shown in Fig.4. The expression

for the pentabox-integrand has been given in a very compact form in Ref. [46]. The

decomposition involves three types of contributions, coming from: a 5-point 8fold-cut, two

4-point 7fold-cuts, and two 5-point 7fold-cuts.

4.1 Five-point Eightfold-Cut

q

k

1

2
3

4

5

Figure 5: 5-point 8fold-cut ∆12345678.
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• The global (N = N)-test ensures the correctness of the overall integrand-decomposition.

Accordingly, after the determination of all polynomial coefficients appearing in the

r.h.s. of Eq.(2.5), the identity between l.h.s. and r.h.s. of Eq.(2.5) must hold for

arbitrary values of the loop variables. One can therefore verify it: either i) at the

end of the reduction procedure, or ii) during the reduction, in order to rule out any

further contribution possibly coming from sub-diagram MI’s. In the latter case, the

failure of the test indicates that other contributions are missing, and the reduction

should continue for their detection.

In the next sections we will present a series of examples that illustrate the integrand-

reduction algorithm explicitly. The required spinor-algebra has been implemented in Math-

ematica, using the package S@M [46].

3. The MHV Pentabox in N = 4 SYM

In this section we apply the integrand-reduction to the decomposition in terms of MI’s of

the 5-point two-loop pentabox in N = 4 SYM, depicted in Fig.1. Following the notation

employed in Ref. [50], we can write the general expression for its integrand as

I1···8 ≡
N1···8(q, k)

D1(q, k) · · ·D8(q, k)
, (3.1)

where k and q are the integration momenta. The definitions of the denominators Di are

provided in Fig.1.
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Figure 1: 5-point pentabox diagram.

The expression for the integrand of the pentabox in N = 4 SYM has been presented

in Ref. [47] in the form

N1···8(q, k) = . . . . (3.2)

3.1 Five-point Eightfold-Cut

The residue of the 8fold-cut is defined as,

∆12345678(q, k) = Res12345678
{

N1···8(q, k)
}

. (3.3)
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Let us consider the ideal generated by the eight denominators in Eq. (3.1),

J1···8 = 〈D1, · · · ,D8〉 (3.11)

The common zeros of the elements of J1···8 are exactly the common zeros of the denomi-

nators. We construct a Gröbner basis G1···8, generating the ideal J1···8 with respect to the

lexicographic order with x1 < . . . < x4 < y1 < · · · < y4. In the following, unless otherwise

specified, this will be the default choice for the monomial order.

To determine the form of the residue, we perform the multivariate division ofN modulo

G1···8. The polynomial ∆1···8 is the remainder of the division. Since G1···8 is a Gröbner basis,

the remainder is uniquely determined once the monomial order is fixed.

Comment on maximum-cut? Shape-lemma?

Operating in this manner, we find that the most general residue of the 8ple-cut can be

parametrized using four monomials {1, x3, x4, y4} as

∆12345678(q, k) = c12345678,0 + c12345678,1 y4 +

+ c12345678,2 x3 + c12345678,3 x4 . (3.12)

We would like to stress the fact that the expression above is solely determined by the

information contained in the set of denominators which are put on-shell, thus from the

topology of the diagram and the selected cut. The specific numerator function did not

play any role in the derivation of the form of Eq. (3.12), which reflects the fact that this

equation is valid in any theory. The value of the coefficients c12345678,i will instead depend

on the particular numerator function.

Employing the expressions in Eqs.(3.3) and (3.12), and sampling N1···8(q, k) given in

Eq.3.2 at the four solutions of the 8fold-cut, we can determine all the coefficients. We find

that only that c12345678,0 and c12345678,1 are non-vanishing, while c12345678,2 = c12345678,3 = 0.

This reflects the fact that the numerator functionN1···8(q, k) does not depend on k, but only

on q. Therefore, only two (out of four) pentabox-like MI’s will appear in the decomposition

of the two-loop 5-point amplitude in N = 4 SYM. This result, already illustrated in

Ref. [49], is in agreement with the findings presented in Ref. [43, 48].

3.2 Five-point Sevenfold-Cut (1234568)

The residue of this 7fold-cut is defined as,

∆1234568(q, k) = Res1234568

{

N(q, k)−∆12345678(q, k)

D7

}

. (3.13)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(3.12).

To find the polynomial expression of ∆1234568, we follow the same approach employed

in the previous section.

We first select appropriate bases to decompose the loop momenta

[which bases ? e = τ ?]

pµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (3.14)

rµ0 = 0µ , τµ1 = pµ3 , τµ2 = pµ4 . (3.15)
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We first select appropriate bases to decompose the loop momenta

[which bases ? e = τ ?]

pµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (3.14)

rµ0 = 0µ , τµ1 = pµ3 , τµ2 = pµ4 . (3.15)
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Figure 6: 5-point 7fold-cut ∆1234568

where one of the on-shell cut-conditions imposes a non-linear relation among x4 and y3,

which can be implicitly written as x4 = x4(y3). We choose y3, namely the component of k

along e3, as the variable parametrizing the infinite set of solutions of the 7fold-cut.

Residue. The residue of this 7fold-cut is defined as,

∆1234568(q, k) = Res1234568

{

N(q, k)− ∆12345678(q, k)

D7

}

. (4.8)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(4.4).

To find the polynomial expression of ∆1234568, we use the following criteria.

1. Diagram topology and Vector basis. We observe that this 5-point diagram depends on

four external momenta and, as in the pentabox case, its integrand does not contain

any spurious ISP.

2. Irreducible Scalar Products. The ISP’s which can be formed by the loop variables

and the external momenta can be chosen to be (q · p1), (q · p2), (k · p3), (k · p4). Due

to the explicit expression of the on-shell solutions, on the cut, one has

(q · p1) → (q(7) · p1) = −x4(τ4 · p1) , (4.9)

(q · p2) → (q(7) · p2) = −x4(τ4 · p2) , (4.10)

(k · p3) → (k(7) · p3) = y3(e3 · p3) , (4.11)

(k · p4) → (k(7) · p4) = y3(e3 · p4) . (4.12)

Therefore, ∆1234567 is polynomial in x4 and y3, and can be written as

∆1234568(q, k) = c1234568,0 +
r

∑

i=1

c1234568,i (p2 · q)
i +

r
∑

i=1

c1234568,i+r (p3 · k)
i , (4.13)

where r is the maximum rank in the integration momenta.

Coefficients. As by-now understood, the unknowns c1234568,i are found by sampling

Eq.(4.8) and Eq.(4.13) on (2r + 1) solutions of the 7fold-cut. Also in this case we find

that ∆1234568(q, k) is a trivial polynomial, namely just a constant, because only c1234568,0
is non-vanishing.

Let us finally remark that integrands with numerator (p2 · q)i, and (p3 · k)i are non-

vanishing, and would be MI’s. They do not show up in this case because they are multiplied

by null coefficients.
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• case x3 = y4 = 0

q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, k =
[p1|p5]
[p2|p5]

hp1|�µ|p2]
2

(5.10c)

• case x3 = y3 = 0

q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, k =
[p3|p2]
[p1|p3]

hp2|�µ|p1]
2

. (5.10d)

Residue and coe�cients

The four solutions can be used to sample the numerator and find the four coe�cients of the

pentabox polynomial which can be expressed in terms of three independent ISPs as

�12345678(q, k) = c

(12345678)
0 + c

(12345678)
q1,1 (q · p1)+ c

(12345678)
k4,1 (k · p4)+ c

(12345678)
k5,1 (k · p5). (5.11)

It is easy to see, however, that in this case, because of the simple form of the integrand,

the previous polynomial reduces to

�12345678(q, k) = c

(12345678)
0 + c

(12345678)
q1,1 (q · p1). (5.12)

where the two unknown coe�cients can be found from just two evaluations of the numerator,

namely at

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, and q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

. (5.13)

The results for the coe�cients are

c

(12345678)
0 = � 1

hp5|p4ihp3|p1i[p5|p3][p4|p1]� hp5|p3ihp4|p1i[p5|p4][p3|p1]

⇥
⇣
2hp5|p4ihp4|p1i(⌧3 · v)[p5|p4][p3|p1]� 2hp5|p4ihp3|p1i(⌧4 · v)[p5|p4][p4|p1]

� ↵hp5|p4ihp3|p1i[p5|p3][p4|p1] + ↵hp5|p3ihp4|p1i[p5|p4][p3|p1]
⌘

c

(12345678)
q1,1 = �4

hp5|p4i(⌧3 · v)[p5|p3]� hp5|p3i(⌧4 · v)[p5|p4]
hp5|p4ihp3|p1i[p5|p3][p4|p1]� hp5|p3ihp4|p1i[p5|p4][p3|p1]

. (5.14)

5.1.2 Five-point Sevenfold-cut: 1234568

On-shell solutions

We find the solutions of the 5-point 7fold-cut D1 = . . . = D6 = D8 = 0 using the same

parametrization of the loop momenta we used for the 8fold cut. Just like before, the three

conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3 y4 = 0 while D4 = D5 = D6 = 0 yield

x1 = x2 = x3 x4 = 0. Therefore we can distinguish four kinds of solutions, namely

q = xa ⌧a (a = 3, 4), k = yb eb (b = 3, 4) (5.15)

Residues

Edo

1 Planar Diagram

The propagators are labelled as in the two-loop paper. The basis as well
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Let us consider the ideal generated by the eight denominators in Eq. (3.1),

J1···8 = 〈D1, · · · ,D8〉 (3.11)

The common zeros of the elements of J1···8 are exactly the common zeros of the denomi-

nators. We construct a Gröbner basis G1···8, generating the ideal J1···8 with respect to the

lexicographic order with x1 < . . . < x4 < y1 < · · · < y4. In the following, unless otherwise

specified, this will be the default choice for the monomial order.

To determine the form of the residue, we perform the multivariate division ofN modulo

G1···8. The polynomial ∆1···8 is the remainder of the division. Since G1···8 is a Gröbner basis,

the remainder is uniquely determined once the monomial order is fixed.

Comment on maximum-cut? Shape-lemma?

Operating in this manner, we find that the most general residue of the 8ple-cut can be

parametrized using four monomials {1, x3, x4, y4} as

∆12345678(q, k) = c12345678,0 + c12345678,1 y4 +

+ c12345678,2 x3 + c12345678,3 x4 . (3.12)

We would like to stress the fact that the expression above is solely determined by the

information contained in the set of denominators which are put on-shell, thus from the

topology of the diagram and the selected cut. The specific numerator function did not

play any role in the derivation of the form of Eq. (3.12), which reflects the fact that this

equation is valid in any theory. The value of the coefficients c12345678,i will instead depend

on the particular numerator function.

Employing the expressions in Eqs.(3.3) and (3.12), and sampling N1···8(q, k) given in

Eq.3.2 at the four solutions of the 8fold-cut, we can determine all the coefficients. We find

that only that c12345678,0 and c12345678,1 are non-vanishing, while c12345678,2 = c12345678,3 = 0.

This reflects the fact that the numerator functionN1···8(q, k) does not depend on k, but only

on q. Therefore, only two (out of four) pentabox-like MI’s will appear in the decomposition

of the two-loop 5-point amplitude in N = 4 SYM. This result, already illustrated in

Ref. [49], is in agreement with the findings presented in Ref. [43, 48].

3.2 Five-point Sevenfold-Cut (1234568)

The residue of this 7fold-cut is defined as,

∆1234568(q, k) = Res1234568

{

N(q, k)−∆12345678(q, k)

D7

}

. (3.13)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(3.12).

To find the polynomial expression of ∆1234568, we follow the same approach employed

in the previous section.

We first select appropriate bases to decompose the loop momenta

[which bases ? e = τ ?]

pµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (3.14)

rµ0 = 0µ , τµ1 = pµ3 , τµ2 = pµ4 . (3.15)
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Figure 3: 5-point 7fold-cut ∆1234568

and express the numerator function and all denominators in terms of the components

{x1, x2, x3, x4, y1, y2, y3, y4} of the loop momenta in the selected bases.

Let us consider the ideal generated by the seven denominators which are set on-shell,

J1234568 = 〈D1, · · · ,D6,D8〉 . (3.16)

We then construct a Gröbner basis G1234568, generating the ideal J1234568 with respect to

the lexicographic order. Finally, we determine the polynomial form of the residue ∆1234568

as remainder of the multivariate division of the numerator function modulo G1234568.

For sake of generality, we consider again the numerator function given by the most

general linear combination of variables {x1, x2, x3, x4, y1, y2, y3, y4}, whose form has been

given in Eq. (3.10). [Edo, what did you use in your calculation?]

Operating in this manner, we find that the residue of this 7ple-cut can be parametrized

using thirty-two monomials

{

1, x3, x
2
3, x

3
3, x

4
3, x4, x

2
4, x

3
4, x

4
4, y3, x4y3, y

2
3, x4y

2
3, y

3
3 , x4y

3
3, y

4
3 , x4y

4
3, y4, x3y4,

x23y4, x
3
3y4, x

4
3y4, x4y4, x

2
4y4, x

3
4y4, x

4
4y4, y

2
4, x4y

2
4 , y

3
4, x4y

3
4, y

4
4 , x4y

4
4

}

. (3.17)

The most general residue ∆1234568 can be written as a linear combination of these mono-

mials, each one multiplied by a coefficient c1234568,i(= ci):

∆1234568 = c0 + c1 x3 + c2 x
2
3 + c3 x

3
3 + c4 x

4
3 + c5 x4 + c6 x

2
4 + c7 x

3
4 + c8 x

4
4

+ c9 y3 + c10 x4 y3 + c11 y
2
3 + c12 x4y

2
3 + c13 y

3
3 + c14 x4y

3
3 + c15 y

4
3

+ c16 x4y
4
3 + c17 y4 + c18 x3y4 + c19 x

2
3y4 + c20 x

3
3y4 + c21 x

4
3y4 + c22 x4y4

+ c23 x
2
4y4 + c24 x

3
4y4 + c25 x

4
4y4 + c26 y

2
4 + c27 x4y

2
4 + c28 y

3
4 + c29 x4y

3
4

+ c30 y
4
4 + c31 x4y

4
4 . (3.18)

All coefficients can be determined by sampling Eq. (3.13), on a set of thirty-two independent

solutions of the 7ple-cut.

Given the form of the numerator for this particular two-loop diagram, the only non-

vanishing coefficient in the linear combination of monomials is the one of the constant term,

which we label c1234568,0.

3.3 Five-point Sevenfold-Cut (1234678)

The extraction of the residue is identical to the previous case, modulo a relabeling of the

momenta. As before, only c1234678,0 is non-vanishing, therefore only the scalar integral

contributes to final result.
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Figure 7: 5-point 7fold-cut ∆1234678

This case is specular to the previous one and can be treated by relabeling the external

momenta (1 ↔ 2, 3 ↔ 5). As before only c1234678,0 is non-vanishing, therefore only the

scalar integral contribute.

4.4 Four-point Sevenfold-Cut (i)

kq

1

2

4

3

5

Figure 8: 4-point 7fold-cut ∆1234578

The 7fold-cut in Fig. 8 is equivalent to the ladder case treated in Sec. 3.1. The solutions

of D1 = . . . = D5 = D7 = D8 = 0 can be decomposed according to Eqs.(2.20,2.21), by

using

rµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (4.14)

pµ0 = 0µ , τµ1 = pµ3 , τµ2 = Pµ
45 −

s45
2P45 · τ1

τµ1 . (4.15)

As in Sec. 3.1, the seven on-shell conditions are not sufficient to freeze the loop momenta,

and one component is left over as a free variable. We choose y3, namely the component of

k along e3, as the variable parametrizing the infinite set of solutions.

The residue of the 7fold-cut, D1 = . . . = D5 = D7 = D8 = 0, is defined as,

∆1234578(q, k) = Res1234578

{

N(q, k)−∆12345678(q, k)

D6

}

, (4.16)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(4.4).

The polynomial expression of ∆1234578 is equivalent to the one given in Eq.(3.9), where ωµ
3 ,

defined in Eq.(3.6), must be constructed with the basis vector {ei} used in Eq.(4.15).

We determine the unknown coefficients and find that only c1234578,0 is non-vanishing.
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In order to find the value of this constant we can use the N = N local test equation

N(q, , k)

D7

����
cut

� �12345678(q, k)

D7

����
cut

= �1234568(q, k)|cut (5.19)

with q given by any of the cut-solutions given in Eq. (5.17). We can, for instance, take the

very first of those parametrizations and take the limit for x3 ! 1 of both sides of Eq. (5.19).

With this approach only the second of the two non-vanishing coe�cients in the residue of the

8fold cut �12345678(q, k) enters this equation, thus simplifying the expression for c

(1234568)
0 .

More explicitly we get

c

(1234568)
0 =

2(⌧3 · v)� c

(12345678)
q1,1 (⌧3 · p1)

�2(⌧3 · p5)
. (5.20)

In order to check the correctness of this result we verified the validity of the N = N local

test, i.e. of Eq. (5.19), on all the parametrizations given in Eq. (5.17).

5.1.3 Five-point Sevenfold-cut: 1234678

We consider now the sevenfold-cut D1 = . . . = D4 = D6 = . . . = D8 = 0. We use the

momentum parametrization of Eq.s (5.3) with pk = 0 and

pq = �p4, e1 = p1, e2 = p2 ⌧1 = p4, ⌧2 = p5. (5.21)

This case is specular to the previous one, therefore we can immediately write down the solution

for the residue

�1234678(q, k) = c

(1234678)
0 =

2(⌧4 · v)� c

(12345678)
q1,1 (⌧4 · p1)

2(⌧4 · p3)
. (5.22)

5.1.4 Four-point Sevenfold-cut: 1234578

On-shell solutions

Let us consider the sevenfold-cut D1 = . . . = D5 = D7 = D8 = 0. We use the momentum

parametrization of Eq.s (5.3) with pq = pk = 0 and

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4 + p5 �
s45

2(p4 + p5) · p3
p3. (5.23)

The conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3y4 = 0 while D4 = D5 = D7 = 0 gives

x2 = x3x4 = 0 and

x1 =
s45

2(p4 + p5) · p3
(5.24)

so that we have again four sets of solutions

q =
s45

2(p4 + p5) · p3
+ xa ⌧a (a = 3, 4), k = yb eb (b = 3, 4). (5.25)

The last constraint D8 = 0 gives a relation between xa and yb. Similarly to the previous cases

we can thus express the solutions of this 7fold cut in terms of 4⇥ 2 parametrizations.

kq − p4

1

2
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4

5

Figure 4: 5-point 7fold-cut ∆1234678

3.4 Four-point Sevenfold-Cut (1234578)

The residue of the 7fold-cut, D1 = . . . = D5 = D7 = D8 = 0, is defined as,

∆1234578(q, k) = Res1234578

{

N(q, k)−∆12345678(q, k)

D6

}

, (3.19)

where ∆12345678(q, k) is the polynomial residue of the 8fold-cut, reconstructed in Eq.(3.12).

kq
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5

Figure 5: 4-point 7fold-cut ∆1234578

After selecting the bases for the momenta as [check and change, introduce perp!]

rµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (3.20)

pµ0 = 0µ , τµ1 = pµ3 , τµ2 = Pµ
45 −

s45
2P45 · τ1

τµ1 . , (3.21)

we express the numerator function and all denominators in terms of the components

{x1, x2, x3, x4, y1, y2, y3, y4} of the loop momenta in the selected bases.

We then consider the ideal generated by the seven denominators which are set on-shell,
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4.5 Four-point Sevenfold-Cut (ii)

Also the case in Fig.9 falls in the two-loop 4-point category discussed in Sec. 3.1 and in

the previous section. The solutions of the 7fold-cut, D1 = . . . = D3 = D5 = . . . = D8 = 0,

can be decomposed according to Eqs.(2.20,2.21), with the following definitions:

pµ0 = 0µ , eµ1 = pµ1 , eµ2 = pµ2 , (4.17)

rµ0 = −pµ4 , τµ1 = pµ5 , τµ2 = Pµ
34 −

s34
2P34 · τ1

τµ1 . (4.18)

Again, we find it convenient to use y3 as free variable to parametrize the infinite set of

solutions.

The residue, defined as

∆1235678(q, k) = Res1235678

{

N(q, k)−∆12345678(q, k)

D4

}

, (4.19)

with ∆12345678(q, k) being the the 8fold-cut polynomial in Eq.(4.4), can be written as in

Eq.(3.9), where ωµ
3 must be replaced by

ωµ
5 =

(p5 · e3)e
µ
4 − (p5 · e4)e

µ
3

e3 · e4
. (4.20)

By polynomial sampling we find that only c1234578,0 is non-vanishing.

4.6 Reconstructed Integrand

Combining the results of the previous sections, the numerator of the planar 5-point pentabox

diagram can be decomposed as,

N(q, k) = ∆12345678(q, k) +

+∆1234568(q, k)D7 +∆1234578(q, k)D6 +

+∆1234678(q, k)D5 +∆1235678(q, k)D4 =

= c12345678,0 + c12345678,1 (q · p1) +

+c1234568,0D7 + c1234578,0D6 +

+c1234678,0D5 + c1235678,0D4 , (4.21)

which corresponds to a decomposition of the integral in terms of six MI’s,
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We checked the correctness of the Eq.(4.21) through the global-(N = N) test, namely by

verifying the identity of the l.h.s and of the r.h.s. for arbitrary values of q and k.

5. The MHV Pentacross in N = 4 SYM
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Figure 10: 5-point Pentacross (non-planar)

In this section we present the result of the integrand reduction of the MHV pentacross

diagram in N = 4 SYM, depicted in Fig.10. The expression for the its integrand has been

given in Table I (b) of Ref. [46], and happens to have the same expression of the planar

diagram, although it is sitting on a different set of denominators, listed in Fig.10.

The integrand-reduction follows the same pattern as described in the Section 3 and 4.

In particular the expressions of the polynomial residues of the 5-point 8−fold cut, and 4-

point 7−fold cut, can be obtained following the same procedures as in Sec. 4.1 and Sec. 3.2,

respectively. The 5-point 7−fold cut deserves a dedicated discussion.
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16 5 Two-loops reduction in N = 4 SYM and N = 8 Supergravity

The numerator is linear in q and independent from k. Therefore it can be parametrized

as

N(q, k) = 2 q · v + ↵ (5.4)

where the vector v and the constant ↵ are given by [1]

v

µ =
1

4

⇣
�12(p

µ
1 � p

µ
2 ) + �23(p

µ
2 � p

µ
3 ) + 2 �45(p

µ
4 � p

µ
5 ) + �13(p

µ
1 � p

µ
3 )
⌘

(5.5)

↵ =
1

4

⇣
2 �12(s45 � s12) + �23(s45 + 3s12 � s13) + 2 �45(s14 � s15) + �13(s12 + s45 � s13)

⌘

(5.6)

where �ij are defined in Ref. [1].

5.1.1 Eightfold-cut

On-shell solutions

We find first the solutions forD1 = . . . = D8 = 0 according to the momentum parametrization

of Eq.s (5.3) with the choice

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.7)

and pq = pk = 0, i.e.

q = x1 p3 + x2 p4 + x3
hp3|�µ|p4]

2
+ x4

hp4|�µ|p3]
2

(5.8a)

k = y1 p1 + y2 p2 + y3
hp1|�µ|p2]

2
+ y4

hp2|�µ|p1]
2

. (5.8b)

The conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3 y4 = 0. The conditions D4 = D5 =

D6 = 0 similarly yield x1 = x2 = x3 x4 = 0. The condition D7 = 0 thus fixes the two solutions

for the loop momentum q

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, (5.9)

which correspond to the cases x4 = 0 and x3 = 0 respectively. Plugging these into the

equation D8 = 0 and choosing either y4 = 0 or y3 = 0 finally yields for each value of q two

solutions for the loop momentum k, making a total of four solutions for the two momenta

q, k, namely

• case x4 = y4 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp3|p2i
hp1|p3i

hp1|�µ|p2]
2

(5.10a)

• case x4 = y3 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp1|p5i
hp2|p5i

hp2|�µ|p1]
2

(5.10b)

16 5 Two-loops reduction in N = 4 SYM and N = 8 Supergravity

The numerator is linear in q and independent from k. Therefore it can be parametrized

as

N(q, k) = 2 q · v + ↵ (5.4)

where the vector v and the constant ↵ are given by [1]

v

µ =
1

4

⇣
�12(p

µ
1 � p

µ
2 ) + �23(p

µ
2 � p

µ
3 ) + 2 �45(p

µ
4 � p

µ
5 ) + �13(p

µ
1 � p

µ
3 )
⌘

(5.5)

↵ =
1

4

⇣
2 �12(s45 � s12) + �23(s45 + 3s12 � s13) + 2 �45(s14 � s15) + �13(s12 + s45 � s13)

⌘

(5.6)

where �ij are defined in Ref. [1].

5.1.1 Eightfold-cut

On-shell solutions

We find first the solutions forD1 = . . . = D8 = 0 according to the momentum parametrization

of Eq.s (5.3) with the choice

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.7)

and pq = pk = 0, i.e.

q = x1 p3 + x2 p4 + x3
hp3|�µ|p4]

2
+ x4

hp4|�µ|p3]
2

(5.8a)

k = y1 p1 + y2 p2 + y3
hp1|�µ|p2]

2
+ y4

hp2|�µ|p1]
2

. (5.8b)

The conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3 y4 = 0. The conditions D4 = D5 =

D6 = 0 similarly yield x1 = x2 = x3 x4 = 0. The condition D7 = 0 thus fixes the two solutions

for the loop momentum q

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, (5.9)

which correspond to the cases x4 = 0 and x3 = 0 respectively. Plugging these into the

equation D8 = 0 and choosing either y4 = 0 or y3 = 0 finally yields for each value of q two

solutions for the loop momentum k, making a total of four solutions for the two momenta

q, k, namely

• case x4 = y4 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp3|p2i
hp1|p3i

hp1|�µ|p2]
2

(5.10a)

• case x4 = y3 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp1|p5i
hp2|p5i

hp2|�µ|p1]
2

(5.10b)

16 5 Two-loops reduction in N = 4 SYM and N = 8 Supergravity

The numerator is linear in q and independent from k. Therefore it can be parametrized

as

N(q, k) = 2 q · v + ↵ (5.4)

where the vector v and the constant ↵ are given by [1]

v

µ =
1

4

⇣
�12(p

µ
1 � p

µ
2 ) + �23(p

µ
2 � p

µ
3 ) + 2 �45(p

µ
4 � p

µ
5 ) + �13(p

µ
1 � p

µ
3 )
⌘

(5.5)

↵ =
1

4

⇣
2 �12(s45 � s12) + �23(s45 + 3s12 � s13) + 2 �45(s14 � s15) + �13(s12 + s45 � s13)

⌘

(5.6)

where �ij are defined in Ref. [1].

5.1.1 Eightfold-cut

On-shell solutions

We find first the solutions forD1 = . . . = D8 = 0 according to the momentum parametrization

of Eq.s (5.3) with the choice

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.7)

and pq = pk = 0, i.e.

q = x1 p3 + x2 p4 + x3
hp3|�µ|p4]

2
+ x4

hp4|�µ|p3]
2

(5.8a)

k = y1 p1 + y2 p2 + y3
hp1|�µ|p2]

2
+ y4

hp2|�µ|p1]
2

. (5.8b)

The conditions D1 = D2 = D3 = 0 yield y1 = y2 = y3 y4 = 0. The conditions D4 = D5 =

D6 = 0 similarly yield x1 = x2 = x3 x4 = 0. The condition D7 = 0 thus fixes the two solutions

for the loop momentum q

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, q =
[p4|p5]
[p3|p5]

hp4|�µ|p3]
2

, (5.9)

which correspond to the cases x4 = 0 and x3 = 0 respectively. Plugging these into the

equation D8 = 0 and choosing either y4 = 0 or y3 = 0 finally yields for each value of q two

solutions for the loop momentum k, making a total of four solutions for the two momenta

q, k, namely

• case x4 = y4 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp3|p2i
hp1|p3i

hp1|�µ|p2]
2

(5.10a)

• case x4 = y3 = 0

q =
hp4|p5i
hp3|p5i

hp3|�µ|p4]
2

, k =
hp1|p5i
hp2|p5i

hp2|�µ|p1]
2

(5.10b)

kq

1

2

4

3

5

(a)

kq − p4

1

2
3

(b)

4

5

kq

(c)

1

2

4

3

5

kq − p4

3

(d)

1

24

5

Figure 3: Cut-diagrams of the sevenfold cuts. Starting from the left, we show the diagram of the
cut (1234568), (1234678), (1234578), and (1235678).

cut bases z Monomials in the residue

(12345678) Eq. (3.12) (x4, x3, x2, y3, y4, x1, x2, y1) S12345678 = {1, x1, y1, y2}

(1234568) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S1234568 = {1, x1, x2
1, x

3
1, x

4
1, x

5
1, x

6
1, x2,

x1x2, x2
1x2, x3

1x2, x4
1x2, x5

1x2,

y1, x1y1, x2
1y1, x

3
1y1, x

4
1y1, x

5
1y1, x2y1,

x1x2y1, x2
1x2y1, x3

1x2y1, x4
1x2y1, y21 , x1y21 ,

x2y21 , y
3
1 , x1y31 , x2y31 , y

4
1 , x1y41 , x2y41 , y2,

x1y2, y1y2, y21y2, y
3
1y2}

(1234678) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S1234678 = S1234568

(1234578) Eq. (3.13) (y4, y3, y2, y1, x4, x3, x2, x1) S1234578 = {1, x1, x2
1, x

3
1, x

4
1, x

5
1, x

6
1, x4,

x1x4, x2
1x4, x3

1x4, x4
1x4, x5

1x4, y1, x1y1,

x2
1y1, x

3
1y1, x

4
1y1, x

5
1y1, x4y1, x1x4y1, x2

1x4y1,

x3
1x4y1, x4

1x4y1, y21 , x1y21 , x4y21 , y
3
1 , x1y31 ,

x4y31 , y
4
1 , x1y41 , x4y41 , y4, x1y4, y1y4, y21y4, y

3
1y4}

(1235678) Eq. (3.14) (y4, y2, y3, y1, x4, x3, x2, x1) S1235678 = {1, x1, x2
1, x

3
1, x

4
1, x

5
1, x

6
1, x2,

x1x2, x2
1x2, x3

1x2, x4
1x2, x5

1x2, y1,

x1y1, x2
1y1, x2y1, x1x2y1, y21 , x1y21 , x

2
1y

2
1 ,

x2y21 , x1x2y21 , y
3
1 , x1y31 , x

2
1y

3
1 , x2y31 , x1x2y31 ,

y41 , x1y41 , x
2
1y

4
1 , x2y41 , x1x2y41 , y3, x1y3,

y1y3, y21y3, y
3
1y3}

Table 2: Same as Table 1, but for the five-point crossed pentabox diagram.

in Table 1.

3.2 Residue of the crossed pentabox

The diagram in Fig. 1 (b) is decomposed in terms of the residue of the eightfold cut

(12345678) and of the residue of the sevenfold cuts in Fig. 3. Each residue can be expressed

in terms of a set of monomials, as shown in Table 2. The parametrization is obtained using

the multivariate polynomial division described in Section 2.

3.3 Residue of the double pentagon

The decomposition of the double pentagon diagram requires the parametrization of the

– 12 –



PentaCross Integrand Decomposition

Global (N=N)-test: OK

q

k

1

2
3

4

5

N(q,k) = c12345678,0

1

2
3

4

5

+ c12345678,1

1

2
3

4

5

(q·p1) +

+c1234568,0

1

2

4

3

5

+ c1234578,0

1

2

4

3

5

+

+c1234678,0

1

234

5

+ c1235678,0

3

1

24

5

(4.22)

We checked the correctness of the Eq.(4.21) through the global-(N = N) test, namely by

verifying the identity of the l.h.s and of the r.h.s. for arbitrary values of q and k.

5. The MHV Pentacross in N = 4 SYM
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D3 = (k + q − p4 − p5)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

Figure 10: 5-point Pentacross (non-planar)

In this section we present the result of the integrand reduction of the MHV pentacross

diagram in N = 4 SYM, depicted in Fig.10. The expression for the its integrand has been

given in Table I (b) of Ref. [46], and happens to have the same expression of the planar

diagram, although it is sitting on a different set of denominators, listed in Fig.10.

The integrand-reduction follows the same pattern as described in the Section 3 and 4.

In particular the expressions of the polynomial residues of the 5-point 8−fold cut, and 4-

point 7−fold cut, can be obtained following the same procedures as in Sec. 4.1 and Sec. 3.2,

respectively. The 5-point 7−fold cut deserves a dedicated discussion.
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5.2 Reconstructed Integrand

The integrand-decomposition for the MHV pentacross diagram given in Table I (b) of

Ref. [46] has the same structure of the planar pentabox,

N(q, k) = ∆12345678(q, k) +

+∆1234568(q, k)D7 +∆1234578(q, k)D6 +

+∆1234678(q, k)D5 +∆1235678(q, k)D4 =

= c12345678,0 + c12345678,1 (q · p1) +

+c1234568,0D7 + c1234578,0D6 +

+c1234678,0D5 + c1235678,0D4 , (5.5)

and contains the same coefficients of Eq.(4.21). The above decomposition has been verified

to fulfill the global-(N = N) test. Therefore, the final expression of the pentacross diagram

in terms of MI’s reads,

q
k

1

2
3

4

5

N(q,k) = c12345678,0

1

2
3

4

5

+ c12345678,1

1

2
3

4

5

(q·p1) +

+c1234568,0

1

2

4

3

5

+ c1234578,0

1

2

4

3

5

(5.6)

+c1234678,0

1

234

5

+ c1235678,0

3

1

24

5

6. Conclusions

We illustrated a first implementation of the integrand-reduction method for two-loop scat-

tering amplitudes. We have shown that the residues of the amplitudes on the multi-particle

cuts are polynomials written in terms of independent irreducible scalar products formed by

loop momenta and either external momenta or polarization vectors built out of them. The

independence conditions among irreducible scalar products can be investigated through

their polynomial behavior in terms of the components of the loop momenta still undeter-

mined after imposing the on-shell cut-conditions.

The reduction of the amplitudes in terms of master integrals can be realized through

polynomial fitting of the integrand, without any need of an apriori knowledge of the integral

basis. We discussed how the polynomial shapes of the residues determine the basis of master

integrals appearing in the final result. In particular, we have found that the multiparticle

residues of amplitudes with less then five external legs can eventually be written in terms

of spurious irreducible scalar products which do not generate any master integral upon

integration.
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The coefficients are the same of  the planar case.
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N(q,k) is linear in the loop momenta
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Figure 1: Five-point diagrams entering the amplitudes in N = 4 SYM and N = 8 SUGRA. They
are the pentabox diagram (a) the crossed pentabox diagram (b) and the double pentagon diagram
(c). For each diagram, the definition of the denominators is shown as well.

The vectors uµ1 , u
µ
2 , and uµ3 and the constants βi are defined as [51]

uµ1 =
1

4

(

γ35124(p
µ
5 − pµ3 ) + γ34125(p

µ
4 − pµ3 ) + γ45123(p

µ
5 − pµ4 ) + 2 γ12345(p

µ
2 − pµ1 )

)

, (3.4)

uµ2 =
1

4

(

γ15234(p
µ
1 − pµ5 ) + γ25134(p

µ
2 − pµ5 ) + γ12345(p

µ
1 − pµ2 ) + 2 γ34125(p

µ
3 − pµ4 )

)

, (3.5)

uµ3 =
1

4

(

γ45321(p
µ
4 − pµ5 ) + γ35421(p

µ
3 − pµ5 ) + γ43215(p

µ
4 − pµ3 ) + 2 γ21435(p

µ
2 − pµ1 )

)

, (3.6)

β1 =
1(

γ35124(s34 + s12 + s35) + 2 γ34125 s12 + γ45123(s34 + s12 + s35)
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5.3 The MHV Penta-crossed-whatever in N = 4 SYM 23

5.3.1 Five-point Eightfold-cut: 12345678

On-shell solutions

We consider the 8fold-cut D1 = . . . = D8 = 0 using the parametrization of the loop momenta

given in Eq. (5.3) with pq = pk = 0 and

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.37)

The first six conditions fix the form of the solutions to be

q = xa ⌧a (a = 3, 4), k = yb eb (b = 3, 4). (5.38)

for the four di↵erent choices of the couple a, b. Plugging these in the equation D7 �D8 = 0

yields

xa =
yb(p5 · eb)� (p2 · p4) + (p1 · p3)

(p5 · ⌧a) . (5.39)

The final condition D8 then becomes a quadratic equation for yb which yields two solutions

for each choice of the couple a, b, i.e. a total of 8 di↵erent solutions for (q, k).

Residue and coe�cients

The residue can be parametrized in terms of 3 independent ISPs chosen between (q · p1),
(q · p2), (k · p3), (k · p4). If the integrand is a linear function of the loop momenta as in our

case, a possible parametrization is

�12345678(q, k) = c

(12345678)
0 + c

(12345678)
q1,1 (q · p1)+ c

(12345678)
k3,1 (k · p3)+ c

(12345678)
k4,1 (k · p4). (5.40)

We can thus sample the numerator on 4 of the 8 solutions and solve for the unknown coe�-

cients.

Once again we can however exploit the simplicity of our integrand in order to simplify

the computation. Indeed, by rewriting the vector v of Eq. (5.36) as a linear combination of

p1, p2, p3, p4 and using the cut conditions (k · p1) = (k · p2) = 0, it is straightforward to see

that

c

(12345678)
0 = ↵, c

(12345678)
q1,1 = 0. (5.41)

Therefore we can limit ourselves to consider two out of the eight solutions and solve for the

two remaining coe�cients. We can, for instance, consider the two solutions

q = �
hp4|p2i[p2|p4] + hp1|p3i[p1|p3]� hp2|p5ihp1|p3i[p5|p1]

hp2|p3i
hp5|p3i[p4|p5] ⌧3 k =

hp1|p3i
hp2|p3i e4

q = �
hp5|p1i[p2|p5][p1|p3]

[p2|p3] + hp2|p4i[p2|p4]� hp1|p3i[p1|p3]
hp5|p4i[p5|p3] ⌧4 k =

[p1|p3]
[p2|p3] e3 (5.42)
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The basis are the usual ones
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= p

4

(18)

with

q

µ
=

4X

i=1

yi ⌧
µ
i , k

µ
=

4X

i=1

xi e
µ
i . (19)

The results of the polynomial division are obtained by calling the Mathematica com-

mands with the list of variables

{x
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, x
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, x
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, x

4

, y

1
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} (20)

and by using the degree lexicographic ordering.

8-ple cut

The residue contains 8 monomials
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7-ple cut
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The basis are the usual ones
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and by using the degree lexicographic ordering.
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4

• The global (N = N)-test ensures the correctness of the overall integrand-decomposition.

Accordingly, after the determination of all polynomial coefficients appearing in the

r.h.s. of Eq.(2.5), the identity between l.h.s. and r.h.s. of Eq.(2.5) must hold for

arbitrary values of the loop variables. One can therefore verify it: either i) at the

end of the reduction procedure, or ii) during the reduction, in order to rule out any

further contribution possibly coming from sub-diagram MI’s. In the latter case, the

failure of the test indicates that other contributions are missing, and the reduction

should continue for their detection.

In the next sections we will present a series of examples that illustrate the integrand-

reduction algorithm explicitly. The required spinor-algebra has been implemented in Math-

ematica, using the package S@M [46].

3. The MHV Pentabox in N = 4 SYM

In this section we apply the integrand-reduction to the decomposition in terms of MI’s of

the 5-point two-loop pentabox in N = 4 SYM, depicted in Fig.1. Following the notation

employed in Ref. [50], we can write the general expression for its integrand as

I1···8 ≡
N1···8(q, k)

D1(q, k) · · ·D8(q, k)
, (3.1)

where k and q are the integration momenta. The definitions of the denominators Di are

provided in Fig.1.

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

Figure 1: 5-point pentabox diagram.

The expression for the integrand of the pentabox in N = 4 SYM has been presented

in Ref. [47] in the form

N1···8(q, k) = . . . . (3.2)

3.1 Five-point Eightfold-Cut

The residue of the 8fold-cut is defined as,

∆12345678(q, k) = Res12345678
{

N1···8(q, k)
}

. (3.3)
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and by using the degree lexicographic ordering.
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5-point 8fold-cut

generic residue

[Maximum Cut Thm]

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

(a)

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k + q − p4 − p5)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2

(b)

5

41
k q

2 3

D1 = k
2

D2 = (k − p1)
2

D3 = (k + p2)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − k + p1 + p3)
2

D8 = (q − k − p2 − p4)
2

(c)

Figure 1: Five-point diagrams entering the amplitudes in N = 4 SYM and N = 8 SUGRA. They
are the pentabox diagram (a) the crossed pentabox diagram (b) and the double pentagon diagram
(c). For each diagram, the definition of the denominators is shown as well.

The vectors uµ1 , u
µ
2 , and uµ3 and the constants βi are defined as [51]

uµ1 =
1

4

(

γ35124(p
µ
5 − pµ3 ) + γ34125(p

µ
4 − pµ3 ) + γ45123(p

µ
5 − pµ4 ) + 2 γ12345(p

µ
2 − pµ1 )

)

, (3.4)

uµ2 =
1

4

(

γ15234(p
µ
1 − pµ5 ) + γ25134(p

µ
2 − pµ5 ) + γ12345(p

µ
1 − pµ2 ) + 2 γ34125(p

µ
3 − pµ4 )

)

, (3.5)

uµ3 =
1

4

(

γ45321(p
µ
4 − pµ5 ) + γ35421(p

µ
3 − pµ5 ) + γ43215(p

µ
4 − pµ3 ) + 2 γ21435(p

µ
2 − pµ1 )

)

, (3.6)

β1 =
1(

γ35124(s34 + s12 + s35) + 2 γ34125 s12 + γ45123(s34 + s12 + s35)
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5.3 The MHV Penta-crossed-whatever in N = 4 SYM 23

5.3.1 Five-point Eightfold-cut: 12345678

On-shell solutions

We consider the 8fold-cut D1 = . . . = D8 = 0 using the parametrization of the loop momenta

given in Eq. (5.3) with pq = pk = 0 and

e1 = p1, e2 = p2 ⌧1 = p3, ⌧2 = p4. (5.37)

The first six conditions fix the form of the solutions to be

q = xa ⌧a (a = 3, 4), k = yb eb (b = 3, 4). (5.38)

for the four di↵erent choices of the couple a, b. Plugging these in the equation D7 �D8 = 0

yields

xa =
yb(p5 · eb)� (p2 · p4) + (p1 · p3)

(p5 · ⌧a) . (5.39)

The final condition D8 then becomes a quadratic equation for yb which yields two solutions

for each choice of the couple a, b, i.e. a total of 8 di↵erent solutions for (q, k).

Residue and coe�cients

The residue can be parametrized in terms of 3 independent ISPs chosen between (q · p1),
(q · p2), (k · p3), (k · p4). If the integrand is a linear function of the loop momenta as in our

case, a possible parametrization is

�12345678(q, k) = c

(12345678)
0 + c

(12345678)
q1,1 (q · p1)+ c

(12345678)
k3,1 (k · p3)+ c

(12345678)
k4,1 (k · p4). (5.40)

We can thus sample the numerator on 4 of the 8 solutions and solve for the unknown coe�-

cients.

Once again we can however exploit the simplicity of our integrand in order to simplify

the computation. Indeed, by rewriting the vector v of Eq. (5.36) as a linear combination of

p1, p2, p3, p4 and using the cut conditions (k · p1) = (k · p2) = 0, it is straightforward to see

that

c

(12345678)
0 = ↵, c

(12345678)
q1,1 = 0. (5.41)

Therefore we can limit ourselves to consider two out of the eight solutions and solve for the

two remaining coe�cients. We can, for instance, consider the two solutions

q = �
hp4|p2i[p2|p4] + hp1|p3i[p1|p3]� hp2|p5ihp1|p3i[p5|p1]

hp2|p3i
hp5|p3i[p4|p5] ⌧3 k =

hp1|p3i
hp2|p3i e4

q = �
hp5|p1i[p2|p5][p1|p3]

[p2|p3] + hp2|p4i[p2|p4]� hp1|p3i[p1|p3]
hp5|p4i[p5|p3] ⌧4 k =

[p1|p3]
[p2|p3] e3 (5.42)
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and by using the degree lexicographic ordering.

8-ple cut

The residue contains 8 monomials

�
1, x

4

, y

3

, y

2

3

, y

4

, x

4

y

4

, y

2

4

, y

3

4

 
(21)

7-ple cut

D

1

uncut The residue is parametrized by 38 monomials

{1, x
3

, x

4

, x

3

x

4

, x

2

4

, x

3

x

2

4

, x

3

4

, x

3

x

3

4

,

x

4

4

, y

3

, x

4

y

3

, x

2

4

y

3

, x

3

4

y

3

, x

4

4

y

3

, y

2

3

,

x

4

y

2

3

, y

3

3

, x

4

y

3

3

, y

4

3

, x

4

y

4

3

, y

5

3

, x

4

y

5

3

,

y

6

3

, y

4

, x

3

y

4

, x

4

y

4

, x

2

4

y

4

, x

3

4

y

4

,

x

4

4

y

4

, y

2

4

, x

4

y

2

4

, y

3

4

, x

4

y

3

4

, y

4

4

, x

4

y

4

4

, y

5

4

,

x

4

y

5

4

, y

6

4

} (22)

D

2

uncut The residue is parametrized by 38 monomials

{1, x
3

, x

2

3

, x

3

3

, x

4

3

, x

4

, x

2

4

, x

3

4

, x

4

4

, y

3

, x

4

y

3

,

y

2

3

, x

4

y

2

3

, y

3

3

, x

4

y

3

3

, y

4

3

, x

4

y

4

3

, y

5

3

,

x

4

y

5

3

, y

6

3

, y

4

, x

3

y

4

, x

2

3

y

4

, x

3

3

y

4

, x

4

3

y

4

,

x

4

y

4

, x

2

4

y

4

, x

3

4

y

4

, x

4

4

y

4

, y

2

4

, x

4

y

2

4

, y

3

4

,

x

4

y

3

4

, y

4

4

, x

4

y

4

4

, y

5

4

, x

4

y

5

4

, y

6

4

} (23)

4

The basis are the usual ones
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(18)

with

q

µ
=

4X

i=1

yi ⌧
µ
i , k

µ
=

4X

i=1

xi e
µ
i . (19)

The results of the polynomial division are obtained by calling the Mathematica com-

mands with the list of variables
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and by using the degree lexicographic ordering.
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4

5-point 8fold-cut

... further reduction ...

• The global (N = N)-test ensures the correctness of the overall integrand-decomposition.

Accordingly, after the determination of all polynomial coefficients appearing in the

r.h.s. of Eq.(2.5), the identity between l.h.s. and r.h.s. of Eq.(2.5) must hold for

arbitrary values of the loop variables. One can therefore verify it: either i) at the

end of the reduction procedure, or ii) during the reduction, in order to rule out any

further contribution possibly coming from sub-diagram MI’s. In the latter case, the

failure of the test indicates that other contributions are missing, and the reduction

should continue for their detection.

In the next sections we will present a series of examples that illustrate the integrand-

reduction algorithm explicitly. The required spinor-algebra has been implemented in Math-

ematica, using the package S@M [46].

3. The MHV Pentabox in N = 4 SYM

In this section we apply the integrand-reduction to the decomposition in terms of MI’s of

the 5-point two-loop pentabox in N = 4 SYM, depicted in Fig.1. Following the notation

employed in Ref. [50], we can write the general expression for its integrand as

I1···8 ≡
N1···8(q, k)

D1(q, k) · · ·D8(q, k)
, (3.1)

where k and q are the integration momenta. The definitions of the denominators Di are

provided in Fig.1.

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

Figure 1: 5-point pentabox diagram.

The expression for the integrand of the pentabox in N = 4 SYM has been presented

in Ref. [47] in the form

N1···8(q, k) = . . . . (3.2)

3.1 Five-point Eightfold-Cut

The residue of the 8fold-cut is defined as,

∆12345678(q, k) = Res12345678
{

N1···8(q, k)
}

. (3.3)

– 10 –

The basis are the usual ones

e

1

= p

1

, e

2

= p

2

, ⌧

1

= p

3

, ⌧

2

= p

4

(18)
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q
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=

4X

i=1
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i , k
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and by using the degree lexicographic ordering.
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The basis are the usual ones
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=

4X
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and by using the degree lexicographic ordering.
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4

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k − p1)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2
.

(a)

q

k

1

2
3

4

5

D1 = k
2

D2 = (k + p2)
2

D3 = (k + q − p4 − p5)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − p4 − p5)
2

D8 = (q + k + p2 + p3)
2

(b)

5

41
k q

2 3

D1 = k
2

D2 = (k − p1)
2

D3 = (k + p2)
2

D4 = q
2

D5 = (q + p3)
2

D6 = (q − p4)
2

D7 = (q − k + p1 + p3)
2

D8 = (q − k − p2 − p4)
2

(c)

Figure 1: Five-point diagrams entering the amplitudes in N = 4 SYM and N = 8 SUGRA. They
are the pentabox diagram (a) the crossed pentabox diagram (b) and the double pentagon diagram
(c). For each diagram, the definition of the denominators is shown as well.

The vectors uµ1 , u
µ
2 , and uµ3 and the constants βi are defined as [51]

uµ1 =
1

4

(

γ35124(p
µ
5 − pµ3 ) + γ34125(p

µ
4 − pµ3 ) + γ45123(p

µ
5 − pµ4 ) + 2 γ12345(p

µ
2 − pµ1 )

)

, (3.4)

uµ2 =
1

4

(

γ15234(p
µ
1 − pµ5 ) + γ25134(p

µ
2 − pµ5 ) + γ12345(p

µ
1 − pµ2 ) + 2 γ34125(p

µ
3 − pµ4 )

)

, (3.5)

uµ3 =
1

4

(

γ45321(p
µ
4 − pµ5 ) + γ35421(p

µ
3 − pµ5 ) + γ43215(p

µ
4 − pµ3 ) + 2 γ21435(p

µ
2 − pµ1 )

)

, (3.6)

β1 =
1(

γ35124(s34 + s12 + s35) + 2 γ34125 s12 + γ45123(s34 + s12 + s35)
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cut bases z Monomials in the residue

(12345678) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S12345678 = {1, x1, y1, x1y1, y21 , y
3
1 , y2, y1y2}

(1345678) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S1345678 = {1, x1, x2
1, x

3
1, x

4
1, x

5
1, x

6
1, x2, x1x2,

x2
1x2, x3

1x2, x4
1x2, x5

1x2, y1,

x1y1, x2
1y1, x

3
1y1, x

4
1y1, x

5
1y1,

x2y1, x1x2y1, x2
1x2y1, x3

1x2y1,

x4
1x2y1, y21 , x1y21 , x2y21 , y

3
1 , x1y31 ,

x2y31 , y
4
1 , x1y41 , x2y41 ,

y2, x1y2, y1y2, y21y2, y
3
1y2}

(1245678) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S1245678 = S1345678

(2345678) Eq. (3.16) (y1, y3, y2, y4, x3, x4, x2, x1) S2345678 = {1, x1, x2
1, x

3
1, x

4
1, x

5
1, x

6
1, x4, x1x4,

x2
1x4, x3

1x4, x4
1x4, x5

1x4, y2, x1y2,

y4, x1y4, x2
1y4, x

3
1y4, x

4
1y4, x

5
1y4,

x4y4, x1x4y4, x2
1x4y4, x3

1x4y4,

x4
1x4y4, y2y4, y24 , x1y24 , x4y24 ,

y2y24 , y
3
4 , x1y34 , x4y34 , y2y

3
4 , y

4
4 , x1y44 , x4y44

}

,

(1234567) Eq. (3.12) (y4, y3, y2, y1, x4, x3, x2, x1) S123567 = {1, x1, x2
1, x

3
1, x

4
1, x2, x1x2, x2

1x2, x3
1x2,

y1, x1y1, x2
1y1, x

3
1y1, x

4
1y1, x2y1, x1x2y1,

x2
1x2y1, x3

1x2y1, y21 , x1y21 , x2y21 , y
3
1 ,

x1y31 , x2y31 , y
4
1 , x1y41 , x2y41 , y2, x1y2,

y1y2, y21y2, y
3
1y2}

Table 3: Same as Table 1, but for the five-point double pentagon diagram in Fig. 1 (c).

5

41 k q

2 3

5

41 k
q

3

2

5

41 k q

2 3

5

41 k q

2 3

Figure 4: Cut-diagrams of the sevenfold cuts. Starting from the left, we show the diagram of the
cut (1234568), (1234678), (1234578), and (1235678).

residues of the eightfold cut (12345678). The topology in Fig. 1 (c) is invariant under the

transformation

pµ1 ↔ pµ4 , pµ2 ↔ pµ3 , kµ ↔ qµ , (3.15)

thus the only sevenfold cut needed are (1345678), (1245678), (2345678), and (1234567),

depicted in Fig. 4. The remaining sevenfold but can be obtained using the transforma-

tion (3.15). The eightfold cut is a maximum cut. It exhibits eight solutions and it is

parametrized by eight coefficients, in accordance with the maxim-cut theorem.
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Complete Decomposition  Global (N=N)-test fulfilled!



2-loop 5-point amplitudes in N=8 SuGra

4

5

(f)1

2

3

p q

4

5

(e)1

2

3

p q

4

5

(d)1

2

3

p q

(c)

4
p q

1

2 3

5(a)

3
4

5
1

2

p q

(b)

3
4

5
1

2

p q

FIG. 2: The six diagrams that appear in the five-point two-loop amplitudes.

respect to permutations of any four legs that connect to a box subgraph. This follows from

the kinematic Jacobi relations, since, triangles are obtained from the antisymmetrization of

any two legs in a box diagram. The absence of triangles is then equivalent to requiring total

symmetry of the box numerators. This explains why the numerator of diagram (B) in fig. 1

is totally symmetric in legs 3, 4 and 5. And, for two multiloop diagrams, which only differ

by the ordering of legs of a box subgraph, it follows that they have the same numerator. At

two loops this property implies the following constraints on the numerators:

N (a) = N (b), N (d) = N (e) = N (f) . (4.2)

This can easily be seen in fig. 2: diagram (a) and (b) only differ by the edge connections of the

rightmost one-loop subgraph, which is a box. Similarly, (d) differs from (e) by connections

in the rightmost one-loop subgraph, and (d) differs from (f) by connections in the leftmost

one-loop subgraph, both are boxes.

Further, the remaining undetermined numerators N (a), N (c) and N (d) are interlocked by

the two kinematic Jacobi relations,

N (c)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 5, 4, 3; p, k3,4 − q)−N (a)(5, 4, 3, 1, 2; k5 + q, k1,2 − p) ,

N (d)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 3, 4, 5; p, q)−N (a)(2, 1, 3, 4, 5; p, q) , (4.3)
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Same topologies as in the N=4 SYM, but N(q,k) is quadratic in the loop momenta
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The integrand reduction is analogous to the N=4 SYM case, involving the same cuts and 
residues.
 
Due to one extra power of loop momenta, the reduction involves also 6-denominator 
diagrams: in the corresponding residues, the constant term is the only non-vanishing 
coefficient.



Conclusions 
A unique mathematical framework for Amplitudes at any order in Perturbation Theory

one ingredient: Feynman denominator

one operation: partial fractioning

Multivariate Polynomial Division/Groebner-basis 
generates the residue at an arbitrary cut

the general expression for the factorized amplitude

Residues’ classification complementary to Landau’s singularity classification

byproduct: the Maximum-cut Theorem

Recursive generation of the Integrand-decomposition Formula @ any loop

Amplitude decomposition from the shape of residues

ISP’s determine a (non-minimal) MI-set

Automation

additional identities at the integrand level to reduce the number of MI’s

Outlook
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2-loop Decomposition in DimReg (t’HV)
Two-loop photon self-energy in (4� 2✏) dimensions
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Figure 1: The tree 1PI two-loops diagrams contributing to the photon self-energy.

1 Intro

Gauge invariance implies that the result takes the form

⇧µ⌫ =

⇣
g(d)µ⌫ � kµk⌫

k2

⌘
⇧(k2) (1)

where g(d)µ⌫ is the metric tensor in d = 4�2✏ dimensions and ⇧(k2) can be obtained by tracing

the previous equation

1

⇧(k2) =
1

d� 1

⇧

µ
µ. (2)

The two-loop 1PI contributions are given by the diagrams depicted in Fig. 1, hence we may

write

(d� 1)⇧

(2l)
1PI(k

2
) = ⇧a(k

2
) +⇧b(k

2
) +⇧c(k

2
) (3)

where each contribution is given by the trace of the corresponding diagram. Since the last

two diagrams are related by symmetry, I will only give the reduction of the first two.

The d-dimensional loop momenta q̄1 and q̄2 are decomposed as usual

q̄i = qi + ~µi, q̄i · q̄j = qi · qj � µij (4)

with µij ⌘ ~µi · ~µj .

1I use the HV scheme. In this example every propagator is a loop-propagator, hence every state is d-

dimensional, except for the external momentum k which is 4-dimensional. We also notice that in the final

result we could substitute g(d)µ⌫ with g(4)µ⌫ , since in our computations it will be contracted with four-dimensional

external states.
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Figure 1: The tree 1PI two-loops diagrams contributing to the photon self-energy.
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We also decompose any four-dimensional momentum q in terms of the basis k,E2, e3, e4,

where k is the external momentum. The only non-vanishing scalar products between two

(non-necessarily distinct) elements of the basis are

k2, E2
2 , (e3 · e4).

2 Diagram (a)

The denominators are

D1 = q21 � µ11

D3 = q22 � µ22

D2 = q21 + k2 + 2(k · q1)� µ11

D4 = q22 + k2 + 2(k · q2)� µ22

D5 = q21 + q22 � 2(q1 · q2)� µ11 � µ22 + 2µ12. (5)

The integrand is

Ia =

Na

D1 . . . D5
(6)

and the numerator

Na = N (0)
a +N (1)

a ✏+N (2)
a ✏2 (7)

where

N (0)
a = � 32µ2

12 � 32 (k · q1) (k · q2)� 32 (k · q1) (q1 · q2) + 32 (k · q1)µ12

� 32 (k · q2) (q1 · q2) + 32 (k · q2)µ12 + 64 (q1 · q2)µ12 � 32 (q1 · q2)2

N (1)
a = 32µ2

12 + 16µ11 µ22 + 16 k2 (q1 · q2)� 16 k2 µ12 + 32 (k · q1) (k · q2)

+ 32 (k · q1) (q1 · q2) + 16 (k · q1) q22 � 32 (k · q1)µ12 � 16 (k · q1)µ22

+ 16 (k · q2) q21 + 32 (k · q2) (q1 · q2)� 32 (k · q2)µ12 � 16 (k · q2)µ11

+ 16 q21 q
2
2 � 16 q21 µ22 � 64 (q1 · q2)µ12 + 32 (q1 · q2)2 � 16 q22 µ11

N (2)
a = � 16µ11 µ22 � 16 k2 (q1 · q2) + 16 k2 µ12 � 16 (k · q1) q22 + 16 (k · q1)µ22

� 16 (k · q2) q21 + 16 (k · q2)µ11 � 16 q21 q
2
2 + 16 q21 µ22 + 16 q22 µ11. (8)
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The complete decomposition of the numerators reads

N (0)
a = D5�

(0)
1234 +D4

⇣
8 k2

⌘
+D4D5

⇣
4

⌘
+D3

⇣
8 k2

⌘
+D3D5

⇣
4

⌘
+D3D4

⇣
� 8

⌘

+D2

⇣
8 k2

⌘
+D2D5

⇣
4

⌘
+D2D4

⇣
� 8

⌘
+D2D4D5

⇣
4

k2

⌘
+D2D3D5

⇣
� 4

k2

⌘

+D1

⇣
8 k2

⌘
+D1D5

⇣
4

⌘
+D1D4D5

⇣
� 4

k2

⌘
+D1D3

⇣
� 8

⌘
+D1D3D5

⇣
4

k2

⌘

+D1D2

⇣
� 8

⌘
� 8 (k2)2

N (1)
a = D5�

(1)
1234 +D4

⇣
� 8 k2

⌘
+D4D5

⇣
� 4

⌘
+D3

⇣
� 8 k2

⌘
+D3D5

⇣
� 4

⌘
+D3D4

⇣
8

⌘

+D2

⇣
� 8 k2

⌘
+D2D5

⇣
� 4

⌘
+D2D4

⇣
8

⌘
+D2D4D5

⇣
� 4

k2

⌘
+D2D3

⇣
8

⌘

+D2D3D5

⇣
4

k2

⌘
+D1

⇣
� 8 k2

⌘
+D1D5

⇣
� 4

⌘
+D1D4

⇣
8

⌘
+D1D4D5

⇣
4

k2

⌘

+D1D3

⇣
8

⌘
+D1D3D5

⇣
� 4

k2

⌘
+D1D2

⇣
8

⌘
+ 8 (k2)2

N (2)
a = +D5

⇣
8 k2

⌘
+D2D3

⇣
� 8

⌘
+D1D4

⇣
� 8

⌘
(9)

where

�

(0)
1234 = � 16µ12 � 12 k2 +

16 (q1 · E2) (q2 · E2)

E2
2

+

16 (q1 · e3) (q2 · e4)
(e3 · e4)

+

16 (q1 · e4) (q2 · e3)
(e3 · e4)

�

(1)
1234 = 16µ12 + 4 k2 � 16 (q1 · E2) (q2 · E2)

E2
2

� 16 (q1 · e3) (q2 · e4)
(e3 · e4)

� 16 (q1 · e4) (q2 · e3)
(e3 · e4)

(10)

The decomposition in terms of MIs is obtained by plugging these expressions in Eq. (6)

and dropping those contributions which vanish upon integration. We obtain

Z
ddq1d

dq2Ia =

Z
ddq1d

dq2
⇣

� 8 (k2)2

D1D2D3D4D5
� 12 k2

D1D2D3D4
+

8 k2

D1D2D3D5

+

8 k2

D1D2D4D5
+

8 k2

D1D3D4D5
+

8 k2

D2D3D4D5

⌘

+ ✏

Z
ddq1d

dq2
⇣

8 (k2)2

D1D2D3D4D5
+

4 k2

D1D2D3D4
� 8 k2

D1D2D3D5

� 8 k2

D1D2D4D5
� 8 k2

D1D3D4D5
� 8 k2

D2D3D4D5

+

8

D1D4D5
+

8

D2D3D5

⌘

+ ✏2
Z

ddq1d
dq2

⇣
8 k2

D1D2D3D4
� 8

D1D4D5
� 8

D2D3D5

⌘
(11)
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3 Diagram (b)

The denominators are

D1 = q21 � µ11

D3 = q22 � µ22

D2 = q21 + k2 � 2(k · q1)� µ11

D4 = q21 + q22 + 2(q1 · q2)� µ11 � µ22 � 2µ12. (12)

The integrand is

Ib =
Nb

D2
1D2D3D5

(13)

and the numerator

Nb = N (0)
b +N (1)

b ✏+N (2)
b ✏2 (14)

where

N (0)
b = 16µ11µ12 + 16µ112� 16 (k · q1) q21 � 32 (k · q1) (q1 · q2) + 32 (k · q1)µ12

+ 16 (k · q1)µ11 + 16 (k · q2) q21 � 16 (k · q2)µ11 + 16 q21 (q1 · q2)

� 16 q21 µ12 � 32 q21 µ11 + 16 (q21)
2 � 16 (q1 · q2)µ11

N (1)
b = � 32µ11µ12 � 32µ112 + 32 (k · q1) q21 + 64 (k · q1) (q1 · q2)� 64 (k · q1)µ12

� 32 (k · q1)µ11 � 32 (k · q2) q21 + 32 (k · q2)µ11 � 32 q21 (q1 · q2)

+ 32 q21 µ12 + 64 q21 µ11 � 32 (q21)
2
+ 32 (q1 · q2)µ11

N (2)
b = 16µ11µ12 + 16µ112� 16 (k · q1) q21 � 32 (k · q1) (q1 · q2) + 32 (k · q1)µ12

+ 16 (k · q1)µ11 + 16 (k · q2) q21 � 16 (k · q2)µ11 + 16 q21 (q1 · q2)� 16 q21 µ12

� 32 q21 µ11 + 16 (q21)
2 � 16 (q1 · q2)µ11. (15)

The complete decomposition of the numerators reads

N (0)
b = D4

⇣
� 8 k2

⌘
+D3

⇣
8 k2

⌘
+D2D4

⇣
8

⌘
+D2D3

⇣
� 8

⌘
+D1

⇣
16 (k · q2)

⌘
+D2

1

⇣
8

⌘

N (1)
b = D4

⇣
16 k2

⌘
+D3

⇣
� 16 k2

⌘
+D2D4

⇣
� 16

⌘
+D2D3

⇣
16

⌘
+D1

⇣
� 32 (k · q2)

⌘

+D2
1

⇣
� 16

⌘

N (2)
b = D4

⇣
� 8 k2

⌘
+D3

⇣
8 k2

⌘
+D2D4

⇣
8

⌘
+D2D3

⇣
� 8

⌘
+D1

⇣
16 (k · q2)

⌘
+D2

1

⇣
8

⌘

(16)

The decomposition in terms of MIs is (I’m still not 100% sure)

Z
ddq1d

dq2Ib = (1� 2✏+ ✏2)

Z
ddq1d

dq2
⇣

16 (k · q2)
D1D2D3D4

+

8

D2D3D4

⌘
(17)
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The decomposition in terms of MIs is (I’m still not 100% sure)
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deals with multivariate polynomials in z = (z1, z2, . . .) .

Ideal J ≡ 〈ω1(z) · · ·ωs(z)〉 generated by ωi

J =
{
∑

i hi(z) ωi(z)
}

polynomial coefficients hi(z)

Multivariate polynomial division of f(z) modulo ω1(z), . . . ,ωs(z)
needs an order, i.e. z1z2

?
> z21

! f(z) =
∑

i hi(z)ωi(z) +R(z)
hi(z) & R(z) not unique

Gröbner basis {g1(z), . . . , gr(z)}
exists (Buchberger’s algorithm) & generates J
! unique R(z)

Hilbert’s Nullstellensatz
V (J ) = set of common zeros of J
( f = 0 in V (J ) )⇒ ( fr ∈ J for some r )
Weak Nullstellensatz: ( V (J ) = ∅ )⇔ ( 1 ∈ J )

Edoardo Mirabella – p.8/14



weak Nullstellensatz 
Theorem

phism of k-algebras is a ring homomorphism R ! S such that

k

✏✏

��

??
??

??
??

R // S

commutes. Let’s make a simple observation at this point:

Lemma 1.2.1. The map f 7! ev(f) is a homomorphism of k-algebras from
k[x1, . . . xn] to the algebra of k-valued functions on An.

Exercise 1.2.2. Show that this homomorphism is injective if k is infinite, but
not in general.(In view of this, we will eventually stop distinguishing between f
and ev(f) when k is infinite.)

Let’s suppose that S is explicity given to us as a finite set of polynomials.
We can now ask is there an algorithm to decide when V (S) this nonempty?
Here are some answers:

1. Algebraically closed fields: Yes by Hilbert’s Nullstellensatz (see below).

2. Finite fields: Yes, since there are only a finite number of points to check.

3. R: Yes, by Tarski.

4. Q: Unknown! (However, Matjisevich proved that there is no algorithm
for Z, or equivalently Hilbert’s 10th problem has a negative solution. So
it’s reasonable to expect that it would be no for Q as well.)

Theorem 1.2.3 (Weak Hilbert Nullstellensatz). If k is algebraically closed,
then V (S) = ; i↵ there exists f1 . . . fN 2 S and g1 . . . gN 2 k[x1, . . . xn] such
that

P
figi = 1

The German word nullstellensatz could be translated as “zero set theorem”.
The Weak Nullstellensatz can be rephrased as V (S) = ; i↵ hSi = (1). Since
this result is central to much of what follows, we will assume that k is alge-

braically closed from now on unless stated otherwise. To get an algorithm
as claimed above, we need an e↵ective form of the nullstellensatz:

Theorem 1.2.4 (Hermann). If (f1, . . . fN ) = (1), then there exists gi, with
degree bounded by a computable constant depending on max{deg fi}, such thatP

figi = 1.

Define the ring
R = k[x1, . . . xn]/hSi

Lemma 1.2.5. (k any field.) eva : k[x1, . . . xn] ! k factors throught the canon-
ical map k[x1, . . . xn] ! R i↵ a 2 V (S).

6

Radical Ideal

Finiteness Theorem

Shape Lemma

2.2. LOCALIZING AND REMOVING KNOWN ZEROS 15

The three given generators form a lexicographic Gröbner basis. We see that V(I)
has cardinality seven. The only real root is the origin. The other six zeros of I in
C3 are not real. They are gotten by cyclically shifting

(x, y, z) =
�
�0.14233� 0.35878i, 0.14233� 0.35878i, 0.15188i

�

and (x, y, z) =
�
�0.14233 + 0.35878i, 0.14233 + 0.35878i, �0.15188i

�
.

Note that the coordinates of these vectors also can be written in terms of radicals
since p

red

(x)/x is a cubic polynomial in x2.
If I is a zero-dimensional radical ideal in S = Q[x1, . . . , xn

] then, possibly after
a linear change of variables, the ring S/I is always isomorphic to the univariate
quotient ring Q[x

i

]/(I \ Q[x
i

]). This is the content of the following result.
Proposition 2.3. (Shape Lemma) Let I be a zero-dimensional radical ideal

in Q[x1, . . . , xn

] such that all d complex roots of I have distinct x
n

-coordinates.
Then the reduced Gröbner basis of I in the lexicographic term order has the shape

G =
�

x1 � q1(xn

), x2 � q2(xn

), . . . , x
n�1 � q

n�1(xn

), r(x
n

)
 

where r is a polynomial of degree d and the q
i

are polynomials of degree  d� 1.
For polynomial systems of moderate size, Singular is really fast in computing

the lexicographically Gröbner basis G. It is well known that the coe�cients of the
univariate polynomial r(x

n

) are rational numbers with very large numerators and
denominators. But, if I is a prime ideal over Q, which is frequently the case, there
is nothing we can do because the irreducible polynomial r(x

n

) = p
n

(x
n

) is intrinsic
to the problem and not an artifact of any particular solution method.

Perhaps surprisingly, the coe�cients of the polynomials q
i

(x
n

) are often even
worse than those of r(x

n

). But these terrible integers are not intrinsic to the prob-
lem. They are an artifact of the method used. Roullier [Rou99] has proposed the
method of rational univariate representations to circumvent the coe�cient growth
in the q

i

. The key idea is to replace x
i

�q
i

(x
n

) by a polynomial a
i

(x
n

) ·x
i

�b
i

(x
n

)
where a

i

and b
i

are also univariate polynomials of degree  d� 1, but their coe�-
cients are much nicer than those of q

i

. For details see [Rou99].

2.2. Localizing and Removing Known Zeros

In our running example, the origin is a zero of multiplicity eight, and it would
have made sense to remove this distinguished zero right from the beginning. In this
section we explain how to do this and how the number 8 could have been derived a
priori. Let I be a zero-dimensional ideal in S = Q[x1, . . . , xn

] and p = (p1, . . . , pn

)
any point with coordinates in Q. We consider the associated maximal ideal

M = hx1 � p1, x2 � p2, . . . , xn

� p
n

i ⇢ S.

The ideal quotient of I by M is defined as
�
I : M

�
=

�
f 2 S : f · M ✓ I

 
.

We can iterate this process to get the increasing sequence of ideals

I ✓ (I : M) ✓ (I : M2) ✓ (I : M3) ✓ · · ·

This sequence stabilizes with an ideal called the saturation
�
I : M1� =

�
f 2 S : 9m 2 N : f · Mm

✓ I
 
.

Proposition 2.4. The variety of (I : M1) equals V(I)\{p}.

4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 , (4.1)

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns . (4.2)

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions of (4.1) is finite, and each of

them has multiplicity one, therefore Ji1···i4` is zero-dimensional [?] and radical1, see Cor.

2.6, Ch. 4 of [?]. In this case, the Finiteness Theorem (Prop. 8, Ch. 5 of [?]) ensures

that the remainder of the division of any polynomial modulo Ji1···i4` can be parametrised

exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position (Prop. 2.3 of [?]) therefore a Gröbner basis for

the lexicographic order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

(4.3)

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial [?],

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
, (4.4)

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) [?], in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .
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Lemma 3-1 implies the equivalence of conditions (2) and (3) in the following theorem.

Theorem 3-2 (Finiteness Theorem). The following conditions are equivalent:

(1) the variety V(I) is finite;

(2) the set B of standard monomials is finite; and

(3) the C-vector space A is finite dimensional.

Proof: Assume (1). Say that V(I) = {p1, . . . , pm

} where p

j

= (a1j

, . . . , a

nj

) for
j = 1, . . . ,m. For i = 1, . . . , n, consider the polynomial h

i

=
Q

m

j=1(xi

� a

ij

). By
construction, h

i

vanishes everywhere on V(I). By the Nullstellensatz, Theorem 2-1,
some power h

l

i

is in I. Clearly LT (h
i

) = x

ml

i

. Hence x

ml

i

is in hLT (I)i. Therefore, the
set B of standard monomials contains at most (ml)n elements. Thus (1) implies (2).

Lemma 3-1 implies the equivalence of conditions (2) and (3).
Finally, assume that the C-vector space A is finite dimensional with dimension m.

Then, for i = 1, . . . , n, the m+1 cosets [x
i

]0, . . . , [x
i

]m are linearly dependent. So there
exist c0, . . . , cm

2 C, not all zero, such that

mX

j=0

c

j

[x
i

]j = [0].

But the polynomial
P

m

j=0 c

j

x

j

i

has finitely many roots. Therefore, only finitely many
complex numbers may appear as the ith coordinate of points in V(I). Since i is arbi-
trary, we have shown that (3) implies (1). ⇤

If an ideal I satisfies any of the conditions in Theorem 3-2, then I is said to be
zero-dimensional. So I is zero-dimensional if and only if its variety V(I) is finite. In
this paper, we are only interested in systems of polynomial equations that have finitely
many zeros; so for the rest of this paper, we concentrate on proving properties of zero-
dimensional ideals.

Next, we prove a lemma that allows us to give an upper bound on the number of
points in the variety V(I).

Lemma 3-3. Let S = {p1, . . . , pm

} be a finite subset of Cn

. Then there exist poly-

nomials g

i

2 C[x1, . . . , xn

] for i = 1, . . . ,m such that g

i

(p
j

) = 0 if i 6= j and g

i

(p
i

) = 1.

Proof: We show how to construct g1. The construction of the other polynomials is
similar.

Since the p

i

are distinct, p1 and p

i

for i � 2 must di↵er at some coordinate, say the
j

i

th coordinate. Let a

ji be the j

i

th coordinate of p1, and b

ji be the j

i

th coordinate of
p

i

. Then consider the polynomial

f

i

:=
x

ji � b

ji

a

ji � p

ji

.

The polynomial f

i

satisfies f

i

(p1) = 1 and f

i

(p
i

) = 0 for i � 2. The polynomial given
by g1 := f2 · f3 · · · f

m

satisfies the desired properties. ⇤
The following theorem bounds the number of points in V(I) whenever I is zero-

dimensional.

Theorem 3-4. Let I be a zero-dimensional ideal in C[x1, . . . , xn

]. Then the number

of points in V(I) is at most dimC(A). Equality occurs if and only if I is a radical ideal.
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Putting these together, we see the identity holds if one can show

(−1)n

z1z2 · · · zn−1
=

1

z1(z1 − z2)(z1 − z3) · · · (z1 − zn−1)

+
1

(z2 − z1)z2(z2 − z3) · · · (z2 − zn−1)
· · · · · · · · ·

+
1

(zn−1 − z1)(zn−1 − z2) · · · (zn−1 − zn−2)zn−1
. (7.9)

This is so, because (7.9) is just a formula of partial fractioning, or it is just a statement that
the integral ∫

dz

z(z − z1)(z − z2) · · · (z − zn−1)
= 0

for a complex variable z over a contour which encloses all the poles.
Notice that eqn. (7.5) is precisely the identity needed to reassemble a generic tree level gluon

Feynman diagram into lower on-shell amplitudes, as shown in Section 5. The reason for this is
that, as we argued before, the vertices which enter the Feynman diagram and the corresponding
lower n-point functions are the same, being insensitive to the shift of the reference gluons. Also
the external line factors that have to be inserted on the cut lines to recover the lower on-shell
amplitudes cancel pairwise, i.e. ε+ε− = 1. Then, one is left to prove only an identity involving
the momentum space scalar propagators. This is the same as (7.5), with all propagators being
massless mi = 0. The combinatorics work out properly to reproduce the BCFW recursions.
We have also checked these points explicitly for the six gluon amplitudes.

Furthermore, the arguments presented in Section 6, relating the momentum space identity
(7.5) to the Fourier transform of the corresponding largest time equation (4.4), with the sin-
gled out vertices corresponding to those of the external reference gluons, can be easily carried
through.

This completes our purely field theoretical proof of the BCFW recursion relations. In the
process, we have identified the underlying principle behind them in the form of the largest time
equation.

8 Adding massive scalars and fermions

Establishing recursion relations to include charged massive scalars is straightforward in
our framework. The current interaction term (Φ∗∂µΦ − Φ∂µΦ∗)Aµ has only ∂+, ∂− and ∂
derivatives, without the dangerous ∂̄ which would have been sensitive to the shift of the external
momenta, because of the space-cone gauge (a = 0). The quartic interaction ΦΦ∗AµAµ has no
momentum dependence. Therefore the vertices are unchanged under the zη shifts. Besides
there is no external line factor for scalars. This implies that we have met all the requirements
to accommodate recursion relations as stressed over and again.
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will give us a set of solutions, points in the complex plane, namely

zi =
q2
i + m2

i

2η · qi

, (7.4)

for each n − 1 ≥ i ≥ 1. More precisely stated, the factorization amounts to splicing the graph
into a sum of products of two on-shell graphs with shifted momenta {pa − ziη, . . . , q̄i} and
{−q̄i, · · · , pb + ziη}, where · · · stand for the other momenta in the left graph segment and
similarly for those in the right graph segment, with the propagator 1

q2
i
+m2

i

as the partition. The

reason that pa and pb are shifted is because we need to conserve the overall momenta on the
left and the right segment separately to make them into physical amplitudes. We must demand
on-shell conditions for the shifted pa,b with the same masses, which give

(pa − ziη)2 + m2
a = 0, (pb + ziη)2 + m2

b = 0,

or
pa · η = 0, pb · η = 0.

As η is light-like, these conditions clearly do not allow pa,b to be time-like. Therefore, the two
reference vectors must also be light-like, ma = mb = 0.

The identity which we want to establish is

1

q2
1 + m2

1

1

q2
2 + m2

2

· · ·
1

q2
n−1 + m2

n−1

=
1

q2
1 + m2

1

1

(q2 − z1η)2 + m2
2

· · ·
1

(qn−1 − z1η)2 + m2
n−1

+
1

(q1 − z2η)2 + m2
1

1

q2
2 + m2

2

· · ·
1

(qn−1 − z2η)2 + m2
n−1

+ · · · · · · · · ·

+
1

(q1 − zn−1η)2 + m2
1

· · ·
1

(qn−2 − zn−1η)2 + m2
n−2

1

q2
n−1 + m2

n−1

.

(7.5)

The proof of this identity is quite simple. For n − 1 ≥ i #= j ≥ 1, we write

(qi − zjη)2 + m2
i = q2

i + m2
i − 2zjη · qi . (7.6)

Then, using the on-shell conditions for the shifted internal momenta, which is tantamount to
making cuts, we have

q̄2
i + m2

i = 0 → q2
i + m2

i = 2ziη · qi . (7.7)

Together, they yield

(qi − zjη)2 + m2
i = 2η · qi(zi − zj) . (7.8)
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Now that we have the largest time equation, let us Fourier- transform it into momentum
space, appropriate for a physical process under consideration and keeping η as a variable. Then
we obtain a set of shifted momenta, as in (5.23). We then analytically complexify η. For tree
level, this is certainly possible and justifiable, because the dependence on it is only in some
algebraic functions of propagators. At the loop level, we need to invoke the analysis of axiomatic
field theorists [8], which states that there are tubes of analyticity to allow this extension and
to lead to complexified unitarity relations. We now identify these propagators with the ones
which we need in the space-cone gauge to carry on with the analysis.

7 The general case

To exploit the full generality of the problem, we derive an identity satisfied by the momentum
space scalar propagators working under the assumption that we deal with massive propagators,
with arbitrary masses.

Consider a graph at the tree level with n′ vertices and m′ external lines which are on-shell.
As our convention, we take them to be all outgoing. We single out two of these lines which do
not land on the same vertex as reference vectors and call them pa and pb. For a tree graph,
there is a unique path through some of the internal lines which connects pa to pb. We shall
denote the vertex at which pa emanates x1, and that for pb xn in their space-time labels. The
vertices in between are xi, i = 2, . . . n−1. There are then n vertices in this segment of the graph
and therefore n-1 internal lines. Our consideration for the time being will be on this segment.
The internal lines carry momenta qi, joining xi to xi+1, n − 1 ≥ i ≥ 1. How and what other
lines enter or leave these vertices need not concern us at this point. For each qi, we associate a
propagator

∆(xi − xi+1, mi) =

∫
d4qi

(2π)4i

eiqi·(xi−xi+1)

q2
i + m2

i − iε

= θ(η · (xi − xi+1))∆
+(xi − xi+1, mi) + θ(−η · (xi − xi+1))∆

−(xi − xi+1, mi) ,

(7.1)

where

∆+(xi − xi+1, mi) =

∫
d4q̄i

(2π)4i
eiq̄i·(xi−xi+1)δ+(q̄2

i + m2
i ),

∆−(xi − xi+1, mi) =

∫
d4q̄i

(2π)4i
eiq̄i·(xi−xi+1)δ−(q̄2

i + m2
i ) , (7.2)

and where η is a light-like vector. Due to momentum conservation, each qi is expressible in
terms of external momenta, and in particular it has a component +pa, or equivalently −pb.

The factorization procedure is to cut these qi successively by shifting them by zη. The
on-shell conditions

q̄2
i + m2

i = 0, q̄i ≡ qi − z (7.3)
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Abstract

We show how by reassembling the tree level gluon Feynman diagrams in a convenient

gauge, space-cone, we can explicitly derive the BCFW recursion relations. Moreover, the

proof of the gluon recursion relations hinges on an identity in momentum space which we

show to be nothing but the Fourier transform of the largest time equation. Our approach

lends itself to natural generalizations to include massive scalars and even fermions.


