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Production cross section for a system with invariant mass M2 in
hadron collisions at energy

√
s:

σ(τ,M2) =
∫ 1

τ

dz

z
L

(τ

z

)
C(z, αS(M2)); τ =

M2

s

where L is a parton luminosity, and the parton cross section
C(z, αS) has a perturbative expansion in QCD:

C(z, αS) = δ(1− z) +
∞∑

n=1

Cn(z)αn
S ; z =

M2

ŝ

Examples: Higgs, Drell-Yan pairs, heavy quark pairs.



In the threshold region s ∼M2, τ → 1, and therefore z ≥ τ is also
close to 1. Since

Cn(z) ∼
[
log2n−1(1− z)

1− z

]
+

the perturbative expansion is unreliable in this region:

αn
S

∫ 1

τ

dz

z
L

(τ

z

)
Cn(z) ∼ L(τ)αn

S log2n(1− τ) + less singular terms

Resummation is needed.

What happens when τ is not that close to 1 is also rather
interesting.



Resummation in perturbative QCD

[S. Catani and L. Trentadue, NPB 327 (1989) 323; G. Sterman,
NPB 281 (1987) 310; S. Forte and G. Ridolfi, B650 (2003) 229]

Go to Mellin moments:

σ(N,M2) =
∫ 1

0

dτ τN−1 σ(τ,M2) = L(N)C(N,αS(M2))

Resummation techniques in QCD provide a resummed expression
for C(N,αS(M2)):

CQCD(N,M2) = g0(αS) expS(ᾱL, ᾱ)

S(λ, ᾱ) =
1
ᾱ

g1(λ) + g2(λ) + ᾱg3(λ) + ᾱ2g4(λ) + . . .

ᾱ ≡ 2αS(M2)β0, L ≡ ln
1
N

,

where β0 is the first coefficient of the QCD β function

µ2 dαS(µ2)
dµ2

= −β0α
2
S(µ

2) +O(α2
S); β0 =

11CA − 2nf

12π



Logarithmic accuracy in QCD

Powers of log N correctly predicted by QCD resummation, order
by order in the expansion of the coefficient function:

log approx. gi up to g0 up to order accuracy: αn
S Lk

LL i = 1 (αS)0 k = 2n

NLL i = 2 (αS)1 2n− 2 ≤ k ≤ 2n

NNLL i = 3 (αS)2 2n− 4 ≤ k ≤ 2n

NpLL i = p + 1 (αS)p 2n− 2p ≤ k ≤ 2n



For the purpose of comparison, a different form proves useful:

CQCD(N,M2) = ĝ0(αS(M2)) exp ŜQCD

(
M2,

M2

N̄2

)
with

ĝ0(αS) = 1 + ĝ01αS +O(α2
S)

ŜQCD

(
M2,

M2

N̄2

)
=

∫ M2/N̄2

M2

dµ2

µ2

[
A(αS(µ2))

(
ln

1
N̄2

− ln
µ2

M2

)
+ D̂2α

2
S(µ

2)
]

N̄ = Neγ



CQCD(N,M2) can be expanded in powers of αS(Q2), and the inverse
Mellin transform computed term by term.

The resulting series is divergent: CQCD(N,M2) has a branch cut on
the real positive axis due to the Landau pole of the running
coupling, and has therefore no inverse Mellin transform.

An unavoidable feature of perturbative QCD, which is badly
behaved at very low scales.



2. The SCET approach

We will refer to the Drell-Yan resummed cross section as
computed in T. Becher, M. Neubert and G. Xu, JHEP 0807
(2008) 030 [arXiv:0710.0680 [hep-ph]]

using SCET.

Resummed coefficient function given directly in momentum (z)
space:

CSCET(z,M2, µ2
s) = H(M2)U(M2, µ2

s)S(z,M2, µ2
s)

• H(M2) is a hard coefficient, similar to g0

• S(z,M2, µ2
s) soft emission factor

• U(M2, µ2
s) evolution factor



The choice of µs determines which logarithms are being
resummed.

Some details:

S(z,M2, µ2
s) = s̃DY

(
ln

M2

µ2
s

+
∂

∂η
, µs

)
1

1− z

(
1− z√

z

)2η
e−2γη

Γ(2η)

U(M2, µ2
s) = exp

{
−

∫ µ2
s

M2

dµ2

µ2

[
Γcusp

(
αS(µ2)

)
ln

µ2

M2
− γW

(
αS(µ2)

)]}

η =
∫ µ2

s

M2

dµ2

µ2
Γcusp

(
αS(µ2)

)
; Γcusp(αS) = A(αS)

The functions s̃DY(L, µ), γW (αS) have perturbative expansions in
powers of αS(µ2).



Logarithmic accuracy in the BNX approach

Powers of log µs

M correctly predicted by SCET resummation, order
by order in the expansion of the coefficient function:

RG-impr. PT Log. Accuracy Γcusp γW H, s̃DY

PT approx. ∼ αn
s lnk µs

M

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n− 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n− 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n− 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

Less accurate by one power of log at each perturbative order wrt
the QCD counting.

Same accuracy as in QCD achieved by including one more
perturbative order in the calculation of H(M2).



Analytic comparison

The SCET expression can be Mellin-transformed and compared
to the QCD result.

If µs is kept fixed and independent of z we get, to NNLL
accuracy,

CQCD(N,M2) = Cr(N,M2, µ2
s)CSCET(N,M2, µ2

s)

Cr(N,M2, µ2
s) = exp

∫ M2/N̄2

µ2
s

dµ2

µ2

[ (
A(αS(µ2))− A1αS(µ2)

4

)
ln

M2

µ2N̄2

+
A1

8
β(αS(µ2)) ln2 M2

µ2N̄2
+ D̂2α

2
S(µ

2)

]



Observation 1: Cr(N,M2, µ2
s) = 1 for µs = M

N̄
.

The two expressions coincide exactly (and thus have the same
logarithmic accuracy) in N space if µs = M

N̄
.

The SCET technique can be viewed as an alternative (more
efficient?) way to derive QCD resummed results.

Observation 2: CQCD(N,M2) has no Mellin inverse, while
CSCET(N,M2, µ2

s) with µs fixed and N-independent does: the
problems with the Landau pole are confined in Cr(N,M2, µ2

s). In
momentum space

CQCD(z,M2) =
∫ 1

z

dy

y
Cr

(
z

y
,M2, µ2

s

)
CSCET(y, M2, µ2

s)

which only makes sense at any finite order in αS.



BNX suggestion: choose µs in a way related to the hadronic,
rather than partonic, kinematics, namely

µs = M(1− τ)

With this choice, there is no problem with the Landau pole.

However, the standard factorization property is lost:

σSCET(τ,M2) =
∫ 1

τ

dz

z
L

(τ

z

)
CSCET(z,M2,M2(1− τ))

is no longer a convolution product.

The comparison must be carried on at the level of physical cross
sections (because the coefficient function depends on τ) and at
fixed order in αS (because of the Landau pole).



Result (to order α2
S):

σQCD(τ,M2) = σSCET(τ,M2) + α2
S(M

2)
∞∑

n=0

Cn

n!
(1− τ)nσ

(n)
SCET(τ,M2)

where the constants Cn are τ-independent:

C0 = −2
3
ζ3A1β0 −

π2

48
A2

Cn =
A1β0

n

(
π2

6
− 2

n2

)
− A2

4n2
+

2D̂2

n
, n > 0



Log counting: NNLL means that at order αn
S , the correctly

predicted terms are

BNX counting : αn
S lnk(1− τ); 2n− 3 ≤ k ≤ 2n

QCD counting : αn
S lnk(1− τ); 2n− 4 ≤ k ≤ 2n

A leading-log term in σSCET generates terms of order

α2
S × αn

S ln2n(1− τ) = αm
S ln2m−4(1− τ) m = n + 2

in the difference QCD-SCET, which is NNLL according to the
QCD counting, but NNNLL according to the SCET/BNX
counting.

It can be shown that the same pattern is reproduced at all orders
in αS.



The above conclusions hold provided one does not include in the
counting possible powers of ln(1− τ) in the parton luminosity. In
such case we would have

α2
S × αn

S ln2n(1− τ)× lnp(1− τ) = αm
S ln2m−4+p(1− τ) m = n + 2

where the factor lnp(1− τ) arises from the PDFs.

The discrepancy can become arbitrarily large by increasing the
value of p.



Small τ

In most cases of interest at the LHC, τ � 1. Nevertheless, often
resummation provides an improvement over fixed-order
calculations (see previous talk).

In these cases, µs = M(1− τ) is a hard scale, and

Cr(N,M2, µ2
s) = exp

∫ M2/N̄2

µ2
s

dµ2

µ2

[ (
A(αS(µ2))− A1αS(µ2)

4

)
ln

M2

µ2N̄2

+
A1

8
β(αS(µ2)) ln2 M2

µ2N̄2
+ D̂2α

2
S(µ

2)

]
is a NLL correction.

This class of NLL terms are resummed by the QCD result but are
not resummed at all in CSCET(z,M2,M2(1− τ)).



Summary

• The way QCD resummation and SCET resummation are
related depends on the choice of soft scale in the SCET
expression.

• SCET and QCD resummation coincide in Mellin space (and
share the problem of the divergence of the perturbative
expansion) with the traditional choice of soft scale.

• SCET resummation with the soft scale chosen on the basis of
hadron kinematics differs from the QCD result by a
non-universal term.



In the latter case, the SCET approach provides a prescription to
tame the Landau singularity. Prices to pay:

1. accuracy down by one power of log wrt to QCD counting

2. the logarithmic accuracy may be spoiled by PDF dependence

3. deviations from the perturbative results logarithmically
suppressed (as opposed to power or even stronger suppression
of other prescriptions)



back-up slides



An explicit fixed-order calculation yields

Cr(N,M2, µ2
s) = 1+α2

S(M
2)

(
−A1

3
β0 ln3 c

N
+

A2

8
ln2 c

N
+ 2D̂2 ln

c

N

)
+O(α3

S)

The dependence on µs is hidden in

c =
Me−γ

µs
=

e−γ

1− τ
.

No order-αS term: differences appear at least at order α3
S.

Mellin inversion:

Cr(z,M2, µ2
s) = δ(1− z)

+ α2
S(M

2)
(
−A1

3
β0

∂3

∂ξ3
+

A2

8
∂2

∂ξ2
+ 2D̂2

∂

∂ξ

)
cξK(z, ξ)

∣∣∣∣
ξ=0

+O(α3
S),

where

K(z, ξ) =
1

Γ(ξ)
lnξ−1 1

z



The cross section is obtained by taking the convolution

Σ(τ, ξ) =
∫ 1

τ

dz

z
K(z, ξ)σSCET

(τ

z
,M2

)
= (1− τ)ξ∆(ξ)

∞∑
n=0

1
n + ξ

1
n!

(1− τ)nσ
(n)
SCET(τ,M2)

(up to terms suppressed by powers of 1− τ)

Technically, the central point is the factor (1− τ)ξ:

cξ(1− τ)ξ = e−γ .

Derivatives wrt ξ do not generate extra powers of ln(1− τ).

An important point: Σ(τ, ξ) depends (in a non-trivial way) on the
parton luminosity.



A different possibility: choose µs in the SCET coefficient function
to be a parton level soft scale. Typical choice:

µs = M(1− z)

and compare CSCET(z) to the inverse Mellin transform of the QCD
result.

• powers of ln(1− z) correctly reproduced order by order

• z-space resummed expression useless, because of spurious
factorial growth [Catani, Mangano, Nason, Trentadue, NPB
478 (1996) 273]

Very roughly speaking, eαS ln2(1−z) diverges at z = 1 faster than
any power of 1− z.


