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Goal of the talk

I will present a formalism to systematically answer the questions:

1. Is soft-gluon resummation needed?

2. Is soft-gluon resummation advisable? (Are soft terms dominant?)

3. Is the pointlike (large-mt) approximation adequate? (Higgs only)

[MB, Forte, Ridolfi 2012 (and 2010)]

I will also present:

a prediction of N3LO Higgs cross-section (gg channel only)

[Ball, MB, Forte, Marzani, Ridolfi (work in progress)]
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Higgs production cross-section: notations

σ(τ) = τ σ0

∫ 1

τ

dz

z
L
(τ
z

)
C(z, αs), τ =

m2
H

s
, z =

m2
H

ŝ

I concentrate on the gluon fusion channel: L = Lgg

Partonic cross section

σ̂(z) = z σ0

[
δ(1− z) + αsC

(1)(z) + α2
sC

(2)(z) + . . .
]

︸ ︷︷ ︸
coefficient function C(z, αs)

σ0 is the LO partonic cross-section (order α2
s):

Gluon Fusion

t
t

t
H

dominant production mode
sensitive to heavy particle spectrum

R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 31 / 42

The questions 1., 2., 3. refer to the hadronic cross-section σ(τ), but the
approximations apply to the partonic coefficient function C(z, αs).

It is not straightforward to answer!
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Saddle point argument

σ(τ)

τ σ0
=

∫ 1

τ

dz

z
L
(τ
z

)
C(z, αs)

The soft region z → 1 is always included in the integration region.
When is the z ∼ 1 region actually relevant/dominant?

Mellin transform:
σ(N) = L (N)C(N,αs)

σ(τ)

τ σ0
=

∫
dN

2πi
τ−NL (N)C(N,αs)

=

∫
dN

2πi
exp

[
N log

1

τ
+ logL (N) + logC(N,αs)

]

The integral is dominated by the values of N in the proximity of
the saddle point N = N0:

log
1

τ
= − d

dN
logL (N)

∣∣∣∣
N0

− d

dN
logC(N,αs)

∣∣∣∣
N0

[MB, Forte, Ridolfi 2010]
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Then we rephrase the questions:

1. Is soft-gluon resummation needed?

2. Is soft-gluon resummation advisable?

3. Is the pointlike (large-mt) approximation adequate?

⇓

1. Is soft-gluon resummation needed at the saddle point N0?

2. Is soft-gluon resummation advisable at the saddle point N0?

3. Is the pointlike approximation adequate at the saddle point N0?

σ(N) = L (N)C(N,αs)

Hadron level kinematics mH ,
√
s (or τ) ⇒ saddle point N0
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Position of the saddle point

A unique real saddle N0 always exists.
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N
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mH [GeV]

NNLO
(NLO is shown as a shadow)

large mt limit

 √s = 7 TeV
 √s = 8 TeV

 √s = 14 TeV

Note that these curves do not depend on the perturbative order.
This is due to the fact that they are mainly determined by the PDFs.
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Partonic comparison

C(z, αs) = δ(1− z) + αs C
(1)(z) + α2

s C
(2)(z) + α3

s C
(3)(z) + . . .
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Partonic comparison

C(z, αs) = δ(1− z) + αs C
(1)(z) + α2

s C
(2)(z) + α3

s C
(3)(z) + . . .

?

Based on all-order considerations, we can argue that
soft terms dominate for N & 2

(and, a fortiori, the pointlike approx has to be good at least in the same region)

Marco Bonvini Validity of the soft approximation 6



Partonic comparison

C(z, αs) = δ(1− z) + αs C
(1)(z) + α2

s C
(2)(z) + α3

s C
(3)(z) + . . .

?
Based on all-order considerations, we can argue that

soft terms dominate for N & 2

(and, a fortiori, the pointlike approx has to be good at least in the same region)

Marco Bonvini Validity of the soft approximation 6



Example of conclusions one may draw

Assuming mH = 125 GeV

N0 ' 2.06 for LHC 7 TeV

N0 ' 2.03 for LHC 8 TeV

N0 ' 1.92 for LHC 14 TeV
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 √s = 8 TeV

 √s = 14 TeV

LHC pointlike soft
7 TeV very good (∼ 1%) quite good (4− 9%)
8 TeV very good (∼ 1%) quite good (4− 9%)
14 TeV good (∼ 1− 2%) not so good (5− 10%)

Is resummation needed?
The loss-of-perturbativity condition is αs log

2N & 1 which gives N & 10

The saddle point is never so large! ⇒ Resummation never needed.

Soft-gluon resummation can just be used as a (useful!) tool to predict
higher order terms.
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Predictive power of our method

We have a solid method to establish the dominant partonic region
(saddle point)

The saddle point is independent on the perturbative order and on
other details → property of the considered subprocess

Based on all-order considerations, we can argue that the partonic
region in which soft terms dominate is the region N & 2

Then, when N0 & 2, we can predict higher orders using soft terms
coming from soft-gluon resummation
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N3LO prediction for Higgs production

Actually, we use terms coming from both large- and small-z resummations
[Ball, MB, Forte, Marzani, Ridolfi (work in progress)]
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Conclusions

The saddle point method is fast, efficient and it works!

It is a tool to easily check the validity of the soft (and other)
approximations

Approximate prediction for Higgs cross-section at N3LO
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Backup slides
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Discussion on what is SOFT — 1

In z-space: Dk(z) =
[
logk(1−z)

1−z

]
+

2D1(N) =

= ψ2
0(N)− ψ1(N) + 2γψ0(N) + ζ2 + γ2

[
log(1− z)

1− z

]
+

' ψ2
0(N) + 2γψ0(N) + ζ2 + γ2

[
log 1−z√

z

1− z

]′
+

=

[
log(1− z)

1− z

]
+

− log
√
z

1− z

' log2
1

N − 1
2

+ 2γ log
1

N − 1
2

+ ζ2 + γ2 1√
z

[
log log 1

z

log 1
z

]
+

+ (ζ2 + γ2)δ(1− z)

' log2
1

N
+ 2γ log

1

N
+ ζ2 + γ2

[
log log 1

z

log 1
z

]
+

+ (ζ2 + γ2)δ(1− z)

' ψ2
0(N + 1) + 2γψ0(N + 1) + ζ2 + γ2 z

[
log 1−z√

z

1− z

]′
+

The last option allows to include all the terms αn
s log2n−1(1− z) in the soft terms

(equivalent to the collinear improvement of [Krämer, Laenen, Spira 1997], [Catani, de

Florian, Grazzini 2001], [Catani, de Florian, Grazzini, Nason 2003])
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