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Suppose we see an interesting event at the LHC, how can we describe how likely it is to be 
from the SM or something new? 



Introducing the Matrix Element Method. 

• One experimental method is to assign events weights based upon the 
assumption that they arose from a given theory model.
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1. Introduction

P (x|Ω) = 1

σ

∫
dx1 dx2dy

f(x1)f(x2)

x1x2s
|MΩ(y)|2W (x,y) (1.1)

The continued successful running of the LHC is already resulting in an impressive data

set with which to test the Standard Model (SM). One of the main aims of the experimental

program is to observe the mechanism behind electroweak symmetry breaking, for which the

postulated Higgs boson is a theoretically well-motivated example. Using the 5 fb−1 data

set the LHC has tightly constrained the mass of the Higgs boson, whilst also providing

tantalising hints in the low mass region (∼ 120 − 125 GeV) [? ? ]. Present analyses
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• With the full data set we can calculate a weight for each event and for a variety of 
models (or parameter values) and calculate likelihoods

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
A given collision will result in the production of a colour neutral final state (represented here by
four leptons in red) which nearly balance in the transverse plane. This is shown on the left hand
side. The resulting imbalance (X, in blue) represents the remaining event which is not modeled in
the Born Matrix Element. We apply a boost such that X is at rest in the transverse plane, the
remaining longitudinal and energy components are absorbed into the colliding partons.

initial state partons. We postpone the treatment of final state jets at NLO to a future

publication. The results we discuss in this paper have been implemented into a publicly

available program NLOME which is based upon MCFM [7].

This paper proceeds as follows, in section ?? we discuss the generation of the NLO

phase space needed to evaluate a NLO matrix element within the MEM framework, we

then discuss the MEM in detail in section ??. In section 4 we validate the code using

MCFM [7] and Pythia [? ]. Sections 5 and 6 provide explicit examples of the method of

current phenomenological interest. Finally in section 7 we draw our conclusions.

2. The Matrix Element Methods at LO, at NLO and in Data

The Matrix Element Method (MEM) uses a theoretical model to predict a likelihood that a

given event x is described by a theoretical model Ω. The probability measure of observing

event x given the theory model Ω is then defined as

P(x|Ω) =
1

σΩ

∫
dx1dx2 dΦ(y)

f(x1)f(x2)

x1x2s
|MΩ(y)|2W (x,y) . (2.1)

Here W (x,y) represents the experimental transfer function which models the probability

density that an experimental event (or set of events) y is measured in the detector as phase

space point (or set of points) x with a normalization
∫
dxW (x,y) = 1. The integration

is over the parton density functions f(x) and the over the phase space Φ(y). SΩ(y) is the

scattering probability for a given model Ω. σΩ is the total cross section (evaluated at a

center of mass energy =
√
s), ensuring that the overall normalisation of the probability

distribution is equal to one.

The MEM then uses this probability density function P(x|Ω) to construct a likelihood

function L relating the data set x to the model Ω.

L(x|Ω) = f(N)
∏

i=1,N

P(xi|Ω). (2.2)
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• Maximising this likelihood yields the best fit value between data and theory. 



Pros and cons of the method. 

• Clean separation between theory 
and experimental inputs 

• Utilizes full ME. 

• Many potential applications. 

• Ripe for parallelisation 

Theory input

Experimental input

• Computationally expensive 

• Need for simplifications: 

• Transfer function form

• LO ME elements 

This paper proceeds as follows. In section 2 we first introduce the MEM at LO and

discuss its use in experimental analyses. Section 3 explains our extension of the MEM to

NLO and discusses the generation of unweighted NLO events. In section 4 we validate

the code using MCFM [30–33] and Pythia [34]. Section 5 is devoted to an application

of immediate phenomenological interest, namely the search for a Higgs boson in the ZZ!

decay channel to four leptons. Finally in section 6 we draw our conclusions. The appendices

describe the generation of the phase space in more detail and discuss the modifications to

the usual dipole subtraction procedure that are required in our approach.

2. The Matrix Element Method at Leading Order

In this section we define the MEM at LO and discuss how it may be used in experimental

analyses.

2.1 Overview of the MEM

We begin by assuming that one wishes to measure a model parameter Ω, using an experi-

mental data set {x} that contains N events xi. One method to determine the best-fit value

of Ω is to construct a probability density function in which each event is weighted by the

LO scattering probability computed with the parameter Ω. The resulting probability den-

sity function associated with a single event x, for a given Ω, can be written schematically

as,

P(x|Ω) =
1

σLO
Ω

∫
dxadxb dy

∑

ij

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,y)W (x,y) . (2.1)

In this equation fi(xa) and fj(xb) represent the parton distribution functions for partons

of flavours i and j possessing momentum fractions xa and xb of their parent hadrons.

Bij
Ω (pa, pb,y) is the LO scattering probability with partons i and j in the initial state. The

hadron collision takes place at a centre of mass energy
√
s while the flux factor entering in

the denominator of Eq. (2.1) is the partonic centre of mass energy squared, sab = xaxbs.

An experimental event x is by definition a detector level event, whilst the scattering

probability is computed theoretically at the level of partons. Therefore in order to correctly

use the scattering probability as a probability density function one must include effects that

model this discrepancy. The transfer function W (x,y) relates a detector level event x to a

particle level event y that can be used to compute the scattering amplitude. This transfer

function, dependent on the specifics of the experimental set-up, takes account of factors

such as limitations on the energy resolution and acceptance of the detector. The transfer

function is constructed such that it is itself a probability density function,

∫
dyW (x,y) = 1 . (2.2)

Finally, the factor σΩ is the total cross section for the process for a specific choice of Ω,

thus ensuring that the probability distribution is properly normalized to unity.
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The Matrix Element Method: LO definition. 



Experimental events versus fixed order weights. 

Our aim is to turn this 

Into this 



Mapping Data to Born 

• Consider the production of an electorweak final state Q, on the experimental side 
this is measured as the desired final state, plus some addition recoil X.   

• We wish to model this as, 

• One obvious mechanism to remove the excess recoil is to boost it into the initial 
state. I.e. we boost our final state Q such that its conserves momentum in the 
transverse plane. This has the obvious advantage of preserving all Lorentz invariants 
associated with our final state. 

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.
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1. Introduction

Q + X pa + pb → Q (1.1)

The continued successful running of the LHC is already resulting in an impressive data

set with which to test the Standard Model (SM). One of the main aims of the experimental

program is to observe the mechanism behind electroweak symmetry breaking, for which the

postulated Higgs boson is a theoretically well-motivated example. Using the 5 fb−1 data

set the LHC has tightly constrained the mass of the Higgs boson, whilst also providing

tantalising hints in the low mass region (∼ 120 − 125 GeV) [1, 2]. Present analyses often

use data driven techniques for background estimation with an emphasis on accurate signal

modeling, for instance in the diphoton Higgs search [3, 4]. Whilst this is a sensible strategy

for searches, after discovery an accurate modeling of both signal and background will be

required in order to confirm the exact properties of any new particle, such as its spin and
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Getting to the MEM frame

• The only a priori requirement that our boost must fulfill is that it conserves 
transverse momentum 

• This transformation is not unique,  there is freedom in the definition of the 
longitudinal             components

• The longitudinal components specify the parton fractions, 

• So in other words, our boosts do not fix xa and xb uniquely only the product. 

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.
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that Eq. (2.9) does not specify a unique transformation. We can define multiple transfor-

mations that result in Xx = Xy = 0 and that yield different longitudinal components of p.

In other words xa and xb are frame-dependent quantities determined by the boost choice

and it is only the product xaxb that is Lorentz invariant. Therefore in order to produce a

sensibly defined weight for each event we must integrate over this unobservable degree of

freedom.

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

pa + pb −
n∑

i=1

pi

)

.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1

pm

)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1

pm

)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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(pz, E) (1.1)

W (x,y) = δ(x− y) (1.2)

P (x|Ω) = 1

σ

∫
dx1 dx2dy

f(x1)f(x2)

x1x2s
|MΩ(y)|2W (x,y) (1.3)
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The LO MEM 

• We define the “boost function” as, 

• Then our (LO) weight is defined as 

• We now have a mechanism for defining LO probability distributions. The two remaining 
caveats are : implementation of cuts and the definition of the bounds of integration on 
x.....

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏
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)
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×
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)
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Bij
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)
. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(
Q−

n∑

m=1

pm

)
. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|Ω) = 1

σLO
Ω

∫
dyLij(sab, xl, xu)Bij

Ω (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity
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cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

√
saisib
sab

, ηlab,i =
1

2
log

(
x2as

sab

sib
sai

)
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal to W (x,y) = δ(x− y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4# and Z → #+#−. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|Ω) = 1

σLO
Ω

Lij(sab, xl, xu)Bij
Ω (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
Ω (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

Ω (pa, pb,x)|2 and that

σΩ represents the fiducial cross section, calculated using cuts in the lab frame. We define

the following quantity,

BΩ(x) = Lij(sab, xl, xu)Bij
Ω (pa, pb,x) , (2.18)

and observe from Eq. (2.13) that
∫
dxBΩ(x) = σLO

Ω . We can thus simplify Eq. (2.17) to,

P(x|Ω) = 1

σLO
Ω

BΩ(x). (2.19)
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The complication of cuts!

• Cross sections and events are defined in the lab frame, we want to perform our 
calculation in the MEM frame => Need a map for fiducial cuts. 

• This is defined by

• Note pT is defined in terms of invariants, rapidity is boost dependent. In fact cuts on 
rapidity actually fix the upper and lower bounds on the boost integration, 

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|Ω) =
1

σLO
Ω

∫
dyLij(sab, xl, xu)Bij

Ω (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

√
saisib
sab

, ηlab,i =
1

2
log

(
x2as

sab

sib
sai

)
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal toW (x,y) = δ(x − y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4$ and Z → $+$−. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|Ω) =
1

σLO
Ω

Lij(sab, xl, xu)Bij
Ω (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
Ω (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

Ω (pa, pb,x)|2 and that
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that Eq. (2.9) does not specify a unique transformation. We can define multiple transfor-

mations that result in Xx = Xy = 0 and that yield different longitudinal components of p.

In other words xa and xb are frame-dependent quantities determined by the boost choice

and it is only the product xaxb that is Lorentz invariant. Therefore in order to produce a

sensibly defined weight for each event we must integrate over this unobservable degree of

freedom.

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

pa + pb −
n∑

i=1

pi

)

.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1

pm

)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1

pm

)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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Inside the MEM frame. 

Figure 3: Comparison between MCFM (LO and NLO) and Pythia in different frames. On the left
hand side p!

T
is plotted in the MEM frame, whilst on the right hand side the lab frame equivalent

is plotted. Predictions are normalised by the total cross section (or number of events in the Pythia
case).

4.2 Validating the MEM: measuring mZ

In the previous sub-section we have used MCFM, representing a traditional approach to

NLO calculations, to generate lab frame events that are then transformed into the MEM

frame. As described in the previous section, for the the extension of the MEM method to

NLO it is easiest to work directly in the MEM frame. We have modified MCFM accordingly

to incorporate the phase space generator and approach described in the previous section.

In addition to the implementation of the FBPS, the code has been constructed such that

a NLO weight can be ascribed to an individual event in the MEM frame.

A simple test of our implementation of the MEM at LO and NLO is its application to

the measurement of the mass of the Z boson at the 7 TeV LHC. To this end we generate

O(5000) events using Pythia that satisfy the following lab frame requirements,

p!T > 15 GeV , |η!| < 2.5 , 80 GeV < m!+!− < 100 GeV. (4.5)

We use Pythia since it is a completely independent code to MCFM and as such is also

independent of our new method for generating the NLO weights. In addition, Pythia output

is at the particle level, including shower, hadronisation and underlying event models. We

note that in Pythia we have turned off both the mass of the leptons and QED radiation,

– 15 –

Basic example: Z=>2l

Compare the shapes of 
the pT distribution in 
the two frames for 3 
different theory 
predictions.

Since the MEM frame 
naturally removes 
recoil, the three 
predictions become 
similar, NLO corrections 
are small and of order 
10%. 



The Matrix Element Method: NLO definition. 



MEM at NLO 

• Our goal is thus to define the NLO cross section in terms of a single identified Born 
final state. 

• Where R and V represent the real and virtual pieces. 

• The above can be used to define unique NLO weights for an exclusive event. 

• To accomplish our goal we will use a Forward Branching Phase Space (FBPS)  
generator 1106.5045 (Giele, Stavenga, Winter), hep-ph/9302225 (Giele, Glover, Kosower). 

• (Note how our definition above is similar to those found in NLO+PS definitions, but here we 
are focussing on just NLO). 

and bremsstrahlung events live in separate phase spaces, their only communication being

through a regularising subtraction scheme. Instead of following this procedure, we need to

reorganise the calculation such that it can provide a NLO weight for a given Born event,

with the sum over the event weights recovering the usual NLO cross section. To do this we

begin by assuming that our event has been rendered in the MEM frame using the procedure

described in the previous section. We note however that the procedure we will outline in

this section is not useful solely for extending the MEM to NLO. We are creating a method

for producing a NLO cross section from a series of Born phase space points, a procedure

that may have broader applications than are presented here.

Given the phase space point x = p1, . . . , pn where the final state momenta are those

of the identified final state particles, we can define the NLO corrections by,

dσNLO
Ω (x)

dx
= RΩ(x) + VΩ(x) . (3.1)

This follows the usual separation of the NLO calculation into two pieces, each of which

is associated with a different phase space. We stress though that here the separation has

been performed for a fixed Born phase space point, x. The definition of the term associated

with the virtual corrections is straightforward since it is defined in the same phase space

as the Born contribution. Explicitly, we can define VΩ(x) as,

VΩ(x) = Lij(sab, xl, xu)

(
Bij
Ω (pa, pb,x) + V ij

Ω (pa, pb,x)

)

+
2∑

m=0

∫
dz

(
Dm(z,x) ⊗ Lm(z, sab, xl, xu)

)

ij

Bij
Ω (pa, pb,x). (3.2)

Here the first term represents the combination of the Born matrix element Bij
Ω and the

one-loop Born interference term VΩ = 2Re|M(0)∗
Ω M (1)

Ω | (where the dependence on the

initial state partons has been suppressed). This is coupled to the same boost function,

Lij as was defined at LO. In our approach we have followed the NLO implementation of

MCFM and used the dipole subtraction procedure of Catani and Seymour [37] to handle

the singularities in the virtual and real calculations. The final term in Eq. (3.2) contains the

integrated subtraction terms, Da, introduced in this formalism. Since we are considering

initial state singularities the integrated dipoles depend on a convolution variable z. This

variable is convoluted with the boost function to create three structures,

L0 = L, L1 =

∫ xu

xl

dxa
fi(xa/z)fj(sab/(sxa))

zsxasab
, L2 =

∫ xu

xl

dxa
fi(xa)fj(sab/(zsxa))

zsxasab
.

(3.3)

In Eq. (3.2) the sum over these convolutions is given by m.

Using Eq. (3.2) we are able to define an event by event finite weight associated with

the Born plus virtual contributions. Our remaining task is thus to define RΩ(x) such that

there is no double counting of events. In other words we must ensure that the integration

of Eq. (3.1) results in the total NLO cross section (σNLO
Ω ). One way to ensure this is to

– 9 –



Virtual Corrections

• As usual the virtual pieces contain two types of term, a pure loop diagram and 
integrated subtraction terms to cancel the singularities. 

•

MEM must be extended to include a systematic treatment of jets. In this paper we will

not consider this option further.

Finally, one may try to systematically improve the MEM in an attempt to model

the additional radiation. This is the approach discussed in Ref. [? ], with reference to

initial state radiation. Instead one may incorporate such effects by extending the MEM

to NLO. Since a NLO calculation includes the radiation of one additional parton, a first

approximation of the effects of further radiation is made at this order. In the next section

we will illustrate how this may be achieved within the MEM framework.

3. The Matrix Element Method at Next-to-Leading Order

In this section we define the MEM at NLO and, as a by-product, discuss how one may

generate unweighted events at NLO.

3.1 Going beyond LO: Defining NLO on an event by event basis
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state partons has been suppressed). This is coupled to the same boost function, Lij as

was defined at LO. In our approach we have followed the NLO implementation of MCFM

and used the dipole subtraction procedure of Catani and Seymour [? ] to handle the

singularities in the virtual and real calculations. The final term in Eq. (3.2) contains the

integrated subtraction terms, Da, introduced in this formalism. Since we are considering

initial state singularities the integrated dipoles depend on a convolution variable z. This

variable is convoluted with the boost function to create three structures,
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dxa
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(3.3)

In Eq. (3.2) the sum over these convolutions is given by m.

Using Eq. (3.2) we are able to define an event by event finite weight associated with

the Born plus virtual contributions. Our remaining task is thus to define RΩ(x) such that

there is no double counting of events. In other words we must ensure that the integration

of Eq. (3.1) results in the total NLO cross section (σNLO
Ω ). One way to ensure this is to

use a forward branching phase space generator (FBPS) [? ] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the
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• The second term here represents these subtractions and contains an additional 
integral over the convolution between the subtraction terms and the PDFs. 



The Forward Branching Phase Space Generator 

• Mathematically we need to factorize the real phase space into the following, 

• Then Q is identified with the observed final state, from this we derive the form of the FBPS 
integration 

• We then explicitly integrate out these quantities for each event. 
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use a forward branching phase space generator (FBPS) [38] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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Issues with dipoles 

• MCFM, uses Catani-Seymour (hep-ph/9605323) dipoles. The idea is to map a real phase 
space point to a Born PS point multiplied by a Dipole function. 

• This occurs via transformation of the real PS point, involving an emitter, emitted and 
spectator particles (ijk). For the case when both emitter and spectator are initial state 
particles this transformation proceeds as follows, 

• Where the LT on Q ensures momentum conservation

We can invert the equations to obtain.

z =
4 Ê2

b (ŝab − tar − trb) + tartrb

4 Ê2
b (ŝab − trb)

=
4 Ê2

b sab + tartrb

4 Ê2
b (ŝab − trb)

(A.11)

cos θ =
4 Ê2

b (ŝab − tar − trb)− tartrb

4 Ê2
b (ŝab − tar − trb) + tartrb

=
4 Ê2

b sab − tartrb

4 Ê2
b sab + tartrb

.

By choosing

tmin = min(sab − ŝab, ŝab(
√
s− Êa)/Êa) ,

we fulfill the requirement −1 < cos θ < 1. Remaining constraints (such as a jet-veto on pr)

are imposed through event vetos.

We have thus illustrated how we have implemented the FBPS to perform both the

integration over emitted partons and the phase space generation of pa, pb and pr for use

in the matrix element. The input for the generator is just the Born kinematics, i.e. p̂a, p̂b
and Q.

B. Subtraction terms in the MEM frame

In this appendix we discuss the modifications to the Catani-Seymour dipoles [37] needed to

correctly ensure a one-to-one map between the integrated and unintegrated subtractions on

an event by event basis. In this paper we consider processes with electroweak final states,

and as such only need initial-initial dipoles. In the standard approach one would perform

a transformation such that the emitter and spectator are kept along the beam axis, with a

Lorentz transformation on the remaining final state particles performed in order to ensure

momentum conservation. In our case it is essential to keep the final state particles fixed

and instead change the momenta of the initial state partons.

The standard Catani Seymour dipole keeps the momentum of the spectator initial

particle b fixed, while the emitter a is rescaled by an amount xa,r,

p̃ar = xa,r pa ,

xr,ab =
sab + sar + srb

sab
. (B.1)

Here we have kept the same notation as the previous section, with r, a and b representing

the emitted parton, initial state emitter and initial state spectator respectively. Hatted

momenta still represent the underlying Born phase space – with unhatted momenta indi-

cating the real phase space point – and in addition p̃ now represents the dipole phase space

point. The transformation above is given by Eqs. (5.137) and (5.138) in Ref. [37] using our

momentum definitions. In order to ensure that p̃ is a correct phase space point one must

perform a Lorentz transformation (Eqs. (5.139) - (5.144) in Ref. [37]) to ensure momentum

conservation.

The above transformation is not ideal for our setup. This is because the Lorentz

transformation will naturally change the underlying Born phase space point. This means

that there will not be a one-to-one correspondence between real and virtual events and only
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Dipoles cont......

• This transformation is a disaster in the MEM frame, since it breaks our holy rule....

• “Thou shalt not modify a final state phase space point once it has been rendered in the 
MEM frame.” 

• A much more pious transformation is, 

• We still need to do a LT, but now only in the longitudinal direction. 

the sum over all virtual and real contributions will be well-defined. In order to maintain

our exact map to the Born phase space p̂a + p̂b → Q we replace Eq. (B.1) by the following

transformation,

p̃ar = xa,r p̂a , (B.2)

xr,ab =
sab + sar + srb

sab
. (B.3)

Note that the transformation acts on p̂a, the initial state momentum of the Born phase

space. We note that this transformation preserves momentum conservation in the trans-

verse plane, but not in the longitudinal plane. Therefore the correct dipole phase space

point is at a different xa and xb than the original Born phase space point. Since we in-

tegrate over these variables this is sufficient to obtain the exact mapping between virtual

and real contributions on am event by event basis. Using our new transformation we can

implement the usual Catani-Seymour dipole formulae (Eqs. (5.145) - (5.156) in Ref. [37]).
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Real Corrections. 

• We are now in a position to define our real corrections specified for a specific 
Born input. 

• The take home message being that we use the FBPS to integrate out allowed 
partonic emissions (up to some optional jet-veto definition). To ensure finiteness 
we use dipole subtractions to remove the soft+collinear divergences, and we 
had to slightly modify the normal CS dipoles to do this. 

• Other than that its not too dissimilar to a regular NLO calculation!! 

use a forward branching phase space generator (FBPS) [38] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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The MEM at NLO. 

• We now have everything we need to define the MEM at NLO, 

• Note that the real and virtual are both defined for the observed Born topology x. 

• This method is not adding events x+jet into the MEM as some might imagine the 
NLO MEM should do. If there is a jet in the final state then the Born is x+jet not x!! 

• We have implemented this into a new code NLOME based upon MCFM (Campbell, 
Ellis, CW).

matrix element must be evaluated using the original Born ŝab in order to have a one-to-

one correspondence with Eq. (3.2). This also fixes the integration limits, xml and xmu in

Eq. (3.7). We discuss the exact modifications to the usual dipole subtraction scheme in

Appendix B.

We are now in a position to build our scattering probability accurate to NLO, based

on the quantities VΩ(x) and RΩ(x) that we have defined in Eqs. (3.2) and (3.7) above. The

NLO probability density function associated with the event x is,

P(x|Ω) =
1

σNLO
Ω

(
VΩ(x) +RΩ(x)

)
. (3.8)

This equation defines the MEM at NLO.

3.2 Generating unweighted events at NLO

A welcome by-product of the method outlined in the previous sub-section is its ability to

generate unweighted events at NLO. In this section we outline how this is possible and in

later sections we will use the technique to generate samples of unweighted events that can

be used to test the MEM.

Our starting point is Eq. (3.1), in which we explicitly separated the NLO calculation

into real and virtual contributions. We define the inclusive phase space spanned by the

Born processes as Φ, which we can separate into two regions. Region I is the part of the

inclusive phase space, Φ, that is populated by the LO calculation under the lab frame cuts.

Region II is the remaining part of the inclusive phase space, in which the LO calculation

does not contribute.

We focus first on region I. Since the LO contribution is non-zero we can write a point

by point K-factor as follows,

KI(x) =
dσNLO

dx

(
dσLO

dx

)
−1

=
VΩ(x) +RΩ(x)

BΩ(x)
. (3.9)

This quantity is not positive definite since one can construct phase space points for which

KI(x) < 0. However, these correspond to regions in which the NLO calculation is un-

physical. More specifically, it is possible to choose a renormalisation scale such that the

differential cross section becomes negative. Typically this occurs because the choice of

renomalisation scale is widely separated from the typical scale of the event. In general if

a sensible scale choice is used then KI(x) > 0. In order to ensure that KI(x) > 0 it is

sufficient to check that the NLO differential cross section is positive in all observables. One

can then create weighted NLO events in this region by generating a Born phase space point

and recording both the Born weight, BΩ(x) and the K-factor, KI(x) for that point (as well

as the phase space weight associated with x). If the calculation is completely inclusive, i.e.

no cuts are applied and region II is empty, then an unweighted NLO sample can easily be

obtained by unweighting the combination of KI(x), BΩ(x) and the phase space weight.
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Example H=>ZZ=>4l 

• Use SHERPA to generate 4 lepton events with NLO+PS. 

• Define 

• Here      denotes the expected number of events (for a given signal
+background hypothesis (with a fixed background expectation of 200) and 
N is the actual number of observed events. 

uncertainty ranges quoted here should be taken only as a rough estimate of what can be

achieved in a true experimental analysis. Instead, we are more interested in assessing the

performance of the MEM at LO and NLO for a given set of cuts.

We perform our calculation for the LHC operating at
√

s = 7 TeV, with µR = µF = mH

in the calculation of the Higgs signal and µR = µF = 2mZ for the ZZ background. We have

used the CTEQ6 PDF set [43] matched to the appropriate order in perturbation theory.

Our NLO calculation includes the contributions from gg → ZZ for nf = 5 massless flavours,

using results taken from MCFM [32]. Although the interference between SM production of

WW pairs and the Higgs signal may be phenomenologically relevant [44], in the ZZ → 4!

channel the corresponding interference is not expected to be important for a light Higgs

boson since the final state is fully reconstructed. Although the interference effects may

become non-negligible for Higgs masses above a few hundred GeV, we do not include such

effects here.

We begin by studying the scenario in which there is no Higgs boson and the only

source of four lepton events is pp → ZZ → 4! production, i.e. neglecting any other source

of backgrounds. We study the MEM using events samples which have been generated

using SHERPA [45], where a NLO calculation has been matched to a parton shower and

hadronization effects are also included. We then take the SHERPA input and boost it to

the MEM frame as discussed in the previous sections. We note that in the MEM frame

some of these events possess leptons with, for instance, pMEM,!4
T < 5 GeV. Since, at LO,

pMEM
T = plab

T these events cannot pass the fiducial cuts in the LO analysis and as such

are not included in the calculation of the likelihood. However, at NLO, the transverse

momentum is not identical in the two frames, pMEM
T #= plab

T . Therefore a value of pMEM
T <

5 GeV can correspond to a real radiation contribution with plab
T > 5 GeV. As a result such

events are included in the NLO likelihood calculation. Therefore there can be a different

number of events in the LO and NLO data samples. This is a reflection of the fact that

the NLO calculation exhibits a richer kinematical structure than the LO one.

In order that our assumption of an ideal detector is reasonable, we consider only Higgs

bosons with masses of 300 GeV or above. This ensures that the width of the Higgs boson is

sufficiently large (at least 8 GeV) that the experimental detector resolution, embodied by

the transfer functions, should not be the dominant effect. To perform a realistic study in

the region of lighter Higgs bosons would require detailed detector modeling of the transfer

functions and is beyond the scope of this paper.

We generate pseudo-experiments based upon an expectation of 200 observed events.

We then define our likelihood by,

LS+B(µ,N) =
e−µµN

N !

N∏

i=1

P(xi|S = mH) , (5.2)

where N is the number of events observed in the pseudo-experiment, and µ is the expected

number of events for a given signal plus background hypothesis. This extended likelihood

definition is more appropriate in the presence of signal and background contributions and

when the number of events in each pseudo-experiment varies. In the presence of a signal
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Figure 7: Distribution of the log-likelihood difference, Λ = log(LB/LS+B) observed in 821 pseudo
experiments testing the hypothesis that there is a Higgs boson with mH = 300 GeV (left) and
mH = 550 GeV (right).

hypothesis P, the weights that enter the likelihood are defined as,

PLO(xi|S = mH) =
1

(σLO
S + σLO

B )

(
BS(xi) + BB(xi)

)
, (5.3)

PNLO(xi|S = mH) =
1(

σNLO
S + σNLO

B

)
(
VS(xi) + VB(xi) + RS(xi) + RB(xi)

)
. (5.4)

Note that we do not alter the expected number of events based upon the order in pertur-

bation theory, i.e. we expect a background only hypothesis to generate 200 events in both

our LO and NLO studies. As a result, the LO hypothesis is not penalized by its lower

prediction for the total rate relative to NLO. This procedure is thus akin to rescaling the

LO prediction for the rate to its NLO value.

We have performed 821 pseudo-experiments with the procedure outlined above, for

Higgs mass hypotheses of 300 and 550 GeV. The results of these analyses are presented in

Figure 7, in terms of the log-likelihood difference, Λ = log(LB/LS+B). Since the signal at

300 GeV is relatively strong, a typical pseudo-experiment – that contains only background

events – is able to exclude this hypothesis effectively, i.e. Λ > 0. We note that, as expected,

the NLO MEM typically sets a much stronger exclusion than at LO (the peak in the NLO

distribution is in the region Λ ∼ 12, whilst the LO peak is at Λ ∼ 8). From this ensemble

we can calculate the expected value of Λ for a typical pseudo-experiment, the mean of

the distributions in Figure 7. Similarly, the standard deviation of the distribution gives a

measure of the spread of the expected results within the sample.

Repeating this exercise across the range 300-550 GeV we obtain the results shown

in Figure 8, where we have indicated both the expected value of Λ and the standard

deviation of the distribution. Note that the standard deviation, represented by the shaded

band, should be treated only as a means of assessing the spread of results obtained by our

method. It should not be interpreted as a rigorous definition of a confidence contour, such as

one finds in an experimental analysis. We see that the pattern of results is repeated across

the range of Higgs masses considered, with a significant difference between the NLO and
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experiments testing the hypothesis that there is a Higgs boson with mH = 300 GeV (left) and
mH = 550 GeV (right).

hypothesis P, the weights that enter the likelihood are defined as,
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BS(xi) + BB(xi)
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, (5.3)
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. (5.4)

Note that we do not alter the expected number of events based upon the order in pertur-

bation theory, i.e. we expect a background only hypothesis to generate 200 events in both

our LO and NLO studies. As a result, the LO hypothesis is not penalized by its lower

prediction for the total rate relative to NLO. This procedure is thus akin to rescaling the

LO prediction for the rate to its NLO value.

We have performed 821 pseudo-experiments with the procedure outlined above, for

Higgs mass hypotheses of 300 and 550 GeV. The results of these analyses are presented in

Figure 7, in terms of the log-likelihood difference, Λ = log(LB/LS+B). Since the signal at

300 GeV is relatively strong, a typical pseudo-experiment – that contains only background

events – is able to exclude this hypothesis effectively, i.e. Λ > 0. We note that, as expected,

the NLO MEM typically sets a much stronger exclusion than at LO (the peak in the NLO

distribution is in the region Λ ∼ 12, whilst the LO peak is at Λ ∼ 8). From this ensemble

we can calculate the expected value of Λ for a typical pseudo-experiment, the mean of

the distributions in Figure 7. Similarly, the standard deviation of the distribution gives a

measure of the spread of the expected results within the sample.

Repeating this exercise across the range 300-550 GeV we obtain the results shown

in Figure 8, where we have indicated both the expected value of Λ and the standard

deviation of the distribution. Note that the standard deviation, represented by the shaded

band, should be treated only as a means of assessing the spread of results obtained by our

method. It should not be interpreted as a rigorous definition of a confidence contour, such as

one finds in an experimental analysis. We see that the pattern of results is repeated across

the range of Higgs masses considered, with a significant difference between the NLO and
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uncertainty ranges quoted here should be taken only as a rough estimate of what can be

achieved in a true experimental analysis. Instead, we are more interested in assessing the

performance of the MEM at LO and NLO for a given set of cuts.

We perform our calculation for the LHC operating at
√

s = 7 TeV, with µR = µF = mH

in the calculation of the Higgs signal and µR = µF = 2mZ for the ZZ background. We have

used the CTEQ6 PDF set [43] matched to the appropriate order in perturbation theory.

Our NLO calculation includes the contributions from gg → ZZ for nf = 5 massless flavours,

using results taken from MCFM [32]. Although the interference between SM production of

WW pairs and the Higgs signal may be phenomenologically relevant [44], in the ZZ → 4!

channel the corresponding interference is not expected to be important for a light Higgs

boson since the final state is fully reconstructed. Although the interference effects may

become non-negligible for Higgs masses above a few hundred GeV, we do not include such

effects here.

We begin by studying the scenario in which there is no Higgs boson and the only

source of four lepton events is pp → ZZ → 4! production, i.e. neglecting any other source

of backgrounds. We study the MEM using events samples which have been generated

using SHERPA [45], where a NLO calculation has been matched to a parton shower and

hadronization effects are also included. We then take the SHERPA input and boost it to

the MEM frame as discussed in the previous sections. We note that in the MEM frame

some of these events possess leptons with, for instance, pMEM,!4
T < 5 GeV. Since, at LO,

pMEM
T = plab

T these events cannot pass the fiducial cuts in the LO analysis and as such

are not included in the calculation of the likelihood. However, at NLO, the transverse

momentum is not identical in the two frames, pMEM
T #= plab

T . Therefore a value of pMEM
T <

5 GeV can correspond to a real radiation contribution with plab
T > 5 GeV. As a result such

events are included in the NLO likelihood calculation. Therefore there can be a different

number of events in the LO and NLO data samples. This is a reflection of the fact that

the NLO calculation exhibits a richer kinematical structure than the LO one.

In order that our assumption of an ideal detector is reasonable, we consider only Higgs

bosons with masses of 300 GeV or above. This ensures that the width of the Higgs boson is

sufficiently large (at least 8 GeV) that the experimental detector resolution, embodied by

the transfer functions, should not be the dominant effect. To perform a realistic study in

the region of lighter Higgs bosons would require detailed detector modeling of the transfer

functions and is beyond the scope of this paper.

We generate pseudo-experiments based upon an expectation of 200 observed events.

We then define our likelihood by,

LS+B(µ,N) =
e−µµN

N !

N∏

i=1

P(xi|S = mH) , (5.2)

where N is the number of events observed in the pseudo-experiment, and µ is the expected

number of events for a given signal plus background hypothesis. This extended likelihood

definition is more appropriate in the presence of signal and background contributions and

when the number of events in each pseudo-experiment varies. In the presence of a signal
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Example H=>ZZ=>4l 

We generate pseudo 
experiments with no signal 
and proceed to set limits. 

This plot shows results 
from around 1000 p-
experiments at LO and 
NLO, for a hypothesis 
of mh=300 GeV. 

Note in this example 
I’m going to keep mh > 
300 to safely neglect 
experimental resolution 
effects. 



Example H=>ZZ=>4l 

Calculate the expected limit 
from our p-experiments then 
the standard deviation to get  
measure of the spread. 

Top plot shows 
expected results in the 
presence of no Higgs. 
The bottom plot 
indicates an experiment 
with an injected signal 
at mh=425 GeV. 



Future plans. 

• Have currently implemented leptons, MET and photons plans to release a public code for EW 
studies, Higgs, anomalous couplings. 

• Idea is to use these weights as kinematic discriminates for general processes (cf. Gao, Gritsan, 
Guo, Melnikov, Schulze, Tran and  De Rujula, Lykken, Pierini, Rogan, Spiropulu ) for ZZ=4l 
applications.  Shown below is the code with full detector effects included for mh=125 and 
background events with 120 < m4l < 130 GeV. 

• Beyond that we would like to include jets although this will require more serious alterations to 
MCFM ......



Conclusions. 

• We developed an extension of the Matrix Element Method which is accurate to NLO. 

• We work in a special frame in which experimental data is rendered into Born input and 
we calculate NLO corrections in this frame. 

• We have tested the method on several EW processes including MET (although I didnt 
have time to discuss MET today). 

• The method can separate signal like events from background like events based upon 
the kinematics in the MEM frame. 

• The EW code should be available soon (ish), although some serious computer power 
is needed for events with large amounts of missing ET.........


