CMS Status and Plans for Physics with First Data

Sridhara Dasu, University of Wisconsin, CMS Collaboration

LHC, ATLAS Status & Early Physics Prospects - Fabiola Gianotti CMS Status & Early Trigger - This Talk

23 August 2007

Sridhara Dasu @ CERN Theory Workshop

Compact Muon Solenoid CALORIMETERS HCAL ECAL 76k scintillating Plastic scintillator/brass PbWO4 crystals sandwich **IRON YOKE** MUON **ENDCAPS Cathode Strip Chambers** (CSC) **Resistive Plate Chambers** (RPC) TRACKER **Pixels Silicon Microstrips** 210 m² of silicon sensors 9.6M channels Weight: 12,500 T Superconducting Coil, 4 Tesla Diameter: 15.0 m MUON BARREL **Resistive Plate Drift Tube** Length: 21.5 m Chambers (DT) Chambers (RPC) 23 August 2007 Sridhara Dasu @ CERN Theory Workshop 2

CMS

Transverse Slice of CMS

Central Wheel Lowered Calorimeters Installed

region

Silicon strip detector used in barrel and endcaps

Trackers Assembled and tested in TIF

Ready for installation in September

ry Workshop

23 August 2007

Barrel

Module production: ~80% out of 800 modules produced 12 module system test being conducted Material budget expected to smaller than in simulation Final system: one side ready for soak testing in ~ November and the other in ~ December. Ready for Installation in January 2008.

Endcap

2 quarters delivered to CERN, the last quarter by Sept/Oct Vulnerabilities workshop held at FNAL. Preliminary conclusion - detector OK if bias is switched off until beams are stable.

Electromagnetic Calorimeter

- ECAL measures e/ γ energy and position to $l\eta l < 3$
- ~76,000 lead tungstate (PbWO₄) crystals
 - High density
 - Small Moliere radius (2.19 cm) compares to 2.2 cm crystal size
- Resolution:

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.83\%}{\sqrt{E}}\right)^2 + \left(\frac{124MeV}{E}\right)^2 + \left(0.26\%\right)^2$$

Barrel Installed

Endcap still in construction

23 August 2007

Sridhara Dasu @ CERN Theory Workshop

Fitted positions of the peaks of the individual energy spectra for the 50 GeV electrons centered on different crystals after calibration with ~ 140 p⁰s/crystal. 0.67%, consistent with statistical expectation

Cosmic rays calibration

20 SCs mounted – confirmation of geometry All 500 VPTs tested and working.

Steady Assembly Progress

Cables in the back ...

Crystals Production:last crystals to be delivered end-Mar0823 August 2007Sridhara Dasu @ CERN Theory Workshop

Hadronic Calorimeter

- HCAL samples showers to measure their energy/position
 - HB/HE -- barrel/endcap region
 - Brass/scintillator layers
 - Coverage $|\eta| < 3$
 - Resolution:

- HF -- forward region
 - Steel plates/quartz fibers
 - Coverage to ±5
 - Resolution:

ية 0.9 §

2-300GeV with particle id.

Sridhara Dasu @ CERN Theory Workshop

Resolution for Corrected Data (Simple Mean & RMS)

- Blue points are the Raw Data
- Red points are the corrected data (using an e/h correction algorithm)
- Response is increased by ~40% @ 5 GeV and 15% @ 300 GeV.
- Stochastic term of resolution is improved by ~15%.

97% < Corrected Response < 102%

Resolution for Raw Data: $\sigma/E \sim 112\%/\sqrt{E \oplus 9\%}$

Resolution for Corrected Data: $\sigma/E \sim 97\%/\sqrt{E \oplus 8\%}$

- HCAL commissioning underway
- HF+ is the first CMS detector to be fully operational in UX5.
- Starting to commission HE+ and HB

Sridhara Dasu @ CERN Theory Workshop

- Cathode strip chambers in endcaps use wires and strips to measure r and ϕ , respectively. Coverage $|\eta|$ =0.9 to 2.4.
- Resistive plate chambers capture avalanche charge on metal strips. Coverage: current $|\eta|$ <1.6 eventual $|\eta|$ <2.1

Sridhara Dasu @ CERN Theory Workshop

All chambers but those near

- many commissioned

23 August 2007

heavy lifting mounts installed

Muons: DT Status

- 1. All chambers tested, equipped with MiniCrates (Trigger/Readout electronics) and retested.
- 2. All chambers installed, except 8:

MB2, MB3 in sectors S1, S7 of wheels YB-1, YB-2

- 3. On-wheel cooling and gas piping
- 4. All installed chambers+MCs tested and commissioned with cosmics before installing tower electronics
- 5. On wheel cabling from chambers to Tower electronics (HV, LV, Tr/RO, DCS fibers, TTC fibers) and test
- 6. Install tower electronics (HV(done),LV,Tr/RO, DCS)
- 7. Test and commission from chambers up to towers: ready for connection to USC
- 8. When wheel lowered in UXC, cable to USC and Install and commission USC electronics
- 9. Install and test final software suite; Connect to central DAQ, Trigger, TTC
- In red- activities with current focus.

23 August 2007

- Access to chambers underground is restricted
 - Services being installed and commissioned as possible
- Chambers tested using cosmic rays above ground

Barrel installation and commissioning
Hardware installation and pre-commissioning mostly done
Forward installation and commissioning:
Low-η system Pre-commissioning done.
Full system commissioning
YE+ commissioning in November. All system commissioned by Feb 08.

Completion of Muon System

Positive Wheels and Disks: completion of services commissioning whenever accessible

Taking data with commissioned chambers in global runs every month Negative Wheels and Disks lowering in October-December

More than 80% of Frontend Drivers (FEDs) installed. Central DAQ Connectivity test has shown no problems

DAQ System FED test done with HCAL, ECAL, CSC, Tracker, RPC: iterations needed in all cases to improve configuration and/or firmware

Trigger Commissioning

Electronics installation and commissioning are underway in USC55

- Participate in global runs
- Generate triggers for cosmics
- Readout multiple subsystems
- DT muons farthest ahead

Sridhara Dasu @ CERN Theory Workshop

Frontend Readout

INSTALLED & tested

Data To Surface (USC-SCX) • INSTALLED & Tested

- Myrinet switches
- Myrinet Fibers (1024)

Surface Hall SCX (DAQ Farms)

- 800 PC 2x2 2GHz Xeon, 4 GB DELIVERED
- 650 RU/BU PCs (650) INSTALLED
- Event Builder GBE switches (Force10) INSTALLED
- Mass storage (22 TB, 1GB/s) ORDERED
- Filter farm order in Dec 07

23 August 2007

Commission the global computing infrastructure

Transition from commissioning to stable operations while supporting on-going physics studies and detector commissioning

Making end-to-end tests of computing systems through participation in 2007 physics exercise (50 M events/month generated at T2 and reconstructed at T0-T1), global data taking and cosmic runs and Computing Software Analysis challenge CSA07 (50% of 2008)

Scale of CMS data transfers increased significantly. T0-T1 channels reached production operations in reliability & performance.

T2s are being commissioned for analysis as a part of CSA07

LHC 2008 Run Plan From Talk by L. Evans to June 2007 SPC

			LH Phys	C Pilot sics Run						-			
		July				Aug				Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	30	7	14	21	28	4	<u>UIII</u>	18	25	1	////%	15	2
Tu											()))))		
We											UUU		
Th		Beam									Jeune G.		
Fr	Com	missio	ning										
Sa	t	o /TeV											
Su													

CMS Objectives

Cosmics Run, CMS Closed & Field ON - Mar 2008

Commission and operate the detector

Prepare the Collaboration for data taking and analysis.

End-September 07 Tracker insertion

Dec. 07 recording cosmics with Tracker/EB/HB etc. (CMS open)

14 TeV Collisions: Mid-2008

CMS commissioned and ready for efficient physics data taking, the CMS Collaboration trained and ready for analysis of data at 14 TeV

Physics-wise: focus on discovery

Standard Model studies: a necessary step

- Obviously, lots of good physics there as well

But priority is in preparing for the main (new) physics that the LHC is conceived for

From Mike Lamont talk at CMS week

Bunches	β*	6	Luminosity	Event rate
1 x 1	18	10 ¹⁰	10 ²⁷	Low
43 x 43	18	3 x 10 ¹⁰	3.8 x 10 ²⁹	0.05
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.21
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.76
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.38
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	1.9
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	3.9

- 2008 will see physics with rapidly varying conditions
 - Extracting best physics in a timely way from this run requires
 - Optimal online trigger selection and well calibrated offline reconstruction of physics objects ...
 - Trigger and data acquisition operations must track the rapidly varying conditions

2008 Physics

- Rediscovering the SM: QCD, W/Z, top, third generation decays
 - Emphasis on multiple channels and cross-checks
- Early BSM searches:
 - Z' to leptons
 - Low scale SUSY
 - ME_T will be difficult to tame, especially w/ the new detectors (EE) installed!
 - Dijet resonances
 - May take a while to get JES right at high $\rm E_{T}$
 - Extra dimensions (ee, gg)
 - Something VERY spectacular (fireballs, black holes, etc.)
- Early Higgs searches:
 - First look at $h \rightarrow ZZ$, $h \rightarrow WW$, prepare for $h \rightarrow gg$
 - Very first look at H/A \rightarrow t t , often in association with b-jets
 - High-mass Higgs in the golden 4m, 4e modes
- This report:
 - Online trigger configuration results and status
 - Offline analysis analysis plans as part of CSA07

- J/Y and Y serve as early standard candles (with μ)
 - Need special (prescaled) triggers
- Inclusive leptonic W and Z samples will be needed across early physics analyses
 - Calibration & Alignment
 - Lepton Efficiency Calculation
 - Luminosity Measurement/Cross Check
 - Jet Energy Scale, ME_T resolution, etc
 - Absolute ME_T scale via W(en) and Z(t t)
- Baseline L1 triggers are capable of accepting most of produced W/Z
 - HLT quality cuts need to be tuned carefully to not lose events
 - Boot strap calibrations and alignments from early data

Expected Trigger Rates

Bandwidth in 2008: L1T Out $< 5 \times 10^4$ Hz HLT Out $< 1.5 \times 10^{2}$ Hz

We prepared and studied 10³² table recently (HLT Exercise) and are moving to lower luminosities

We cannot trigger on all events even early in 2008

Jet and soft lepton triggers need to be operational

Isolated electron triggers also need to be operational at 10³¹ cm⁻²s⁻¹

All triggers need to be operational at 10^{32} cm⁻²s⁻¹

Multi Level Trigger Strategy

- No tracker in level-1 trigger
 - Electron, photon and p^0 looks the same
 - Trigger level muon P_{T} is poorly measured
- Jet trigger limitations
 - Limited capability to get low P_T jets
 - Limited calorimeter resolution: $100\%/\sqrt{E}$
 - Calibration to take out h,f variation in response
- Poor measurement of missing E_T
 - At best the resolution can be: $100\% \sqrt{\sum E_T}$
 - Calibration not possible
 - Underlying event and pileup contribution
 - Additional limitations due to trigger calculations

Most of L1 output are mistags - Another factor of 1000 rejection at HLT
23 August 2007Sridhara Dasu @ CERN Theory Workshop40

In CMS all trigger decisions beyond Level-1 are performed in a Filter Farm running ~normal CMS reconstruction software on "PCs"

The filter algorithms are setup in several steps

HLT does partial event reconstruction "on demand" seeded by the L1 objects found, using full detector resolution

Algorithms are essentially offline quality but optimized for fast performance

23 August 2007

Sridhara Dasu @ CERN Theory Workshop

- Determine CPU-performance for early physics-run
 - Implementation for 2008 physics-run (14 TeV) Trigger Menu at $\mathcal{L}=10^{32}$ cm⁻² s⁻¹
- Uses real code that will be used online in 2008
 - Algorithms in CMSSW ported from ORCA, tested offline
 - Algorithms optimzed for HLT with L1 emulator seeding
 - Starts from Raw data (unpacking included)
- Entire trigger table exercised at once
 - Jointly optimized L1T and HLT trigger table respecting the bandwidth (including overlaps) is used
- Caveats
 - Not exercised in Online Environment yet

Sridhara Dasu @ CERN Theory Workshop

HLT t -jet tagging

 $\tau\text{-jet}~(\mathrm{E_t}^{\tau\text{-jet}} > 60~GeV)~identification$ (mainly) in the tracker:

Hard track, $p_t^{max} > 40$ GeV, within $\Delta R < 0.1$ around calorimeter jet axis Isolation: no tracks, $p_t > 1$ GeV, within $0.03 < \Delta R < 0.4$ around the hard track For 3-prong selection 2 more tracks in the signal cone $\Delta r < 0.03$

QCD jet rejection from isolation and hard track cuts

Final steps in HLT paths involve tracking which is more time consuming

Reconstruct tracks only in the region of interest around "Level-2" tagged objects

Further reduction by ~ 5 expected for 3-prong QCD jets from τ vertex reconstruction (CMS full simulation)

HLT Timing is influenced by

- Trigger menu (L1T & HLT)
 - Determined by physics priorities
 - Instantaneous luminosity
 - Chose to make a menu for 10³² cm⁻² s⁻¹
 - Maximum luminosity in 2008
- Input L1Trigger rate
 - Parameters of various L1T algorithms, e.g., H/E
 - Limited by bandwidth \otimes safety factor to 17 kHz
- HLTrigger algorithms
 - Standard trigger paths at HLT seeded by L1 trigger bits
 - Order of modules and filters in a path
 - Parameters of the modules and filters

We settled on one setting for the HLT Exercise

I 1 Trigger	Threshold	Prescale	Rate
	(GeV)	Trescure	(kHz)
A_SingleMu3	3	1000	0.01 ± 0.00
A_SingleMu5	5	1000	0.00 ± 0.00
A_SingleMu7	7	1	1.11 ± 0.04
A_SingleMu10	10	1	0.47 ± 0.03
A_SingleMu14	14	1	0.18 ± 0.02
A_SingleMu20	20	1	0.09 ± 0.01
A_SingleMu25	25	1	0.06 ± 0.01
A_SingleIsoEG5	5	10000	0.00 ± 0.00
A_SingleIsoEG8	8	1000	0.01 ± 0.00
A_SingleIsoEG10	10	100	0.04 ± 0.01
A_ŚingleIsoEG12	12	1	2.47 ± 0.06
A_SingleIsoEG15	15	1	1.10 ± 0.04
A_SingleIsoEG20	· 20	1	0.32 ± 0.02
A_SingleIsoEG25	25	1	0.14 ± 0.01
A_SingleEG5	5	10000	0.00 ± 0.00
A_SingleEG8	8	1000	0.01 ± 0.00
A_SingleEG10	10	100	0.04 ± 0.01
A_SingleEG12	12	100	0.03 ± 0.01
A_SingleEG15	15	1	1.51 ± 0.05
A_SingleEG20	20	1	0.52 ± 0.03
A_SingleEG25	25	1	0.25 ± 0.02

L1 Trigger	Threshold	Prescale	Rate
	(GeV)	100	(KHZ)
A_SingleJet70	70	100	0.02 ± 0.01
A_SingleJet100	100	1	0.43 ± 0.02
A_SingleJet150	150	1	0.07 ± 0.01
A_SingleJet200	200	1	0.02 ± 0.01
A_SingleTauJet40	40	1000	0.02 ± 0.01
A.SingleTauJet80	80	1	-0.68 ± 0.03
A_SingleTauJet100	100	1	0.20 ± 0.02
A_HTT250	.250	1	2.56 ± 0.06
A_HTT300	300	1	0.65 ± 0.03
A_HTT400	400	1	0.08 ± 0.01
A_HTT500	500	1	0.02 ± 0.00
A_ETM20	20	10000	0.00 ± 0.00
A_ETM3.0	30	1	5.69 ± 0.09
A_ETM40	40	1	0.40 ± 0.02
A_ETM50	50	1	0.05 ± 0.01
A_ETM60	60	1	0.01 ± 0.00
A_DoubleMu3	3	1	0.28 ± 0.02
A_DoubleIsoEG8	8	1	0.28 ± 0.02
A_DoubleIsoEG10	10	1	0.08 ± 0.01
A_DoubleEG5	5	10000	0.00 ± 0.00
A_DoubleEG10	10	1	0.19 ± 0.02
A_DoubleEG15	15	1	0.05 ± 0.01
A_DoubleJet70	70	1	0.58 ± 0.03
A_DoubleJet100	100	1	0.11 ± 0.01
A_DoubleTauJet20	20	1000	0.02 ± 0.01
A_DoubleTauJet30	30	100	0.08 ± 0.01
A_DoubleTauJet40	40	1	2.36 ± 0.06

L1TEmulator Developers + Werner Sun, SD, Pedram Bargassa

L1T Menu : Mixed

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)
A_Mu3_IsoEG5	3,5	1	0.95 ± 0.04
A_Mu5_IsoEG10	5,10	1	0.04 ± 0.01
A_Mu3_EG12	3,12	1	0.09 ± 0.01
A_Mu3_Jet15	3,15	20	0.30 ± 0.02
A_Mu5_Jet15	5,15	1	1.62 ± 0.05
A_Mu3_Jet70	3,70	1	0.10 ± 0.01
A_Mu5_Jet20	5,20	1	1.18 ± 0.04
A_Mu5_TauJet20	5,20	1	0.66 ± 0.03
A_Mu5_TauJet30	5,30	1	0.38 ± 0.02
A_IsoEG10_Jet15	10,15	20	0.15 ± 0.01
A_IsoEG10_Jet30	10,30	1	1.95 ± 0.05
A_IsoEG10_Jet20	10,20	1	3.04 ± 0.06
A_IsoEG10_Jet70	10,70	1	0.26 ± 0.02
A_IsoEG10_TauJet20	10,20	1	1.95 ± 0.05
A_IsoEG10_TauJet30	10,30	1	1.33 ± 0.04
ALTauJet30LETM30	30,30	1	1.96 ± 0.05
A_TauJet30_ETM40	30,40	1	0.26 ± 0.02
A_TripleMu3	3	1	0.01 ± 0.00
A_TripleJet50	50	1	0.22 ± 0.02
A_QuadJet30	30	1	0.58 ± 0.03
A_MinBias_HTT10	10	large	0.40
A_ZeroBias	0	large	0.40
Total L1 Trigge	er Rate (kHz)		16.67 ± 0.15

Table 8.1: Trigger table showing L1 rates at chosen thresholds for $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$.

L1T Menu

- Optimized to fit in the budget
- μ and e/ γ thresholds yield good W, Z efficiencies, but not τ
- Jet thresholds low enough to cover Tevatron range well
- MET only L1T used at HLT in combination with jets
- Double and mixed triggers for specific physics channels added

L1TEmulator Developers + Werner Sun, SD, Pedram Bargassa

HLT Menu : μ + X

HLT path	L1 condition	Thresholds	HLT Rate	Total Rate	
Single Isolated <i>u</i>	A SingleMu7	11	18.3 ± 2.2	18.3	Juan Alcaraz Maestre.
Single Relaxed μ	A_SingleMu7	16	22.7 ± 1.5	37.7	Adam Everett
Double Relaxed μ	A_DoubleMu3	(3, 3)	12.3 ± 1.6	48.5	Muriel Vender Depold
$J/\psi ightarrow \mu \mu$	A_DoubleMu3	$(3, 3) \ M_{\mu\mu} \in [2.9, 3.3]$	2.0 ± 0.8	49.4	wuner vander Doncki,
$\Upsilon o \mu \mu$	A_DoubleMu3	(3, 3) $M_{\mu\mu} \in [8, 12]$	1.8 ± 0.5	50.5	
$Z ightarrow \mu \mu$	A_DoubleMu3	(7, 7) $M_{\mu\mu} \in [80, 100]$	0.1 ± 0.0	50.5	
Triple Relaxed μ	A_TripleMu3	(3, 3, 3)	0.1 ± 0.0	50.5	-
Same-sign double μ	A_DoubleMu3	(3, 3)	5.7 ± 1.2	52.5	
$b ightarrow \mu$ tag 1-jet Prescale 20	A_Mu5_Jet15	$\frac{20}{\Delta R(\mu, j) < 0.4}$	4.0 ± 0.1	56.1	Meenakshi Narain,
$b ightarrow \mu$ tag 2-jets	A_Mu5_Jet15	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	0.5 ± 0.0	56.1	
$b ightarrow \mu$ tag 3-jets	A_Mu5_Jet15	$\begin{array}{ c c }\hline 70, p_T^{\rm rel}(\mu) > 0.7 \\ \Delta R(\mu, j) < 0.4 \end{array}$	0.3 ± 0.0	56.1	
$b ightarrow \mu$ tag 4-jets	A_Mu5_Jet15	$\begin{array}{c} 40, p_T^{\rm rel}(\mu) > 0.7 \\ \Delta R(\mu,j) < 0.4 \end{array}$	0.4 ± 0.0	56.1	-
$b ightarrow \mu$ tag H_T	A_HTT250	$\begin{array}{c c} 300, p_T^{\rm rel}(\mu) > 0.7 \\ \Delta R(\mu,j) < 0.4 \end{array}$	2.6 ± 0.2	56.6	
$b ightarrow J/\psi(\mu\mu)$	A_DoubleMu3	$(4, 4) \\ M_{\mu\mu} \in [2.95, 3.25]$	0.7 ± 0.1	56.8	Lotte Wilke
μ + <i>b</i> -jet	A_Mu5_Jet15	(7, 35)	0.1 ± 0.0	56.8	Grea Landsberg Duong Nauven
$\mu + b ightarrow \mu$ -jet	A_Mu5_Jet15	(7, 20)	0.1 ± 0.1	56.8	Len Christofek Muriel Vander Dondt
μ + jet	A_Mu5_Jet15	(7, 40)	6.3 ± 0.7	60.8	
$e + \mu$	*	(8, 7)	0.5 ± 0.4	61.2	Sylvia Goy Lopez
$e + \mu$ relaxed	*	(10, 10)	0.1 ± 0.0	61.3	Vuko Brialevic
$\mu + \tau$	A_Mu5_TauJet20	(15, 20)	0.0 ± 0.0	61.3	

Rates: Pedram Bargassa Sridhara Dasu @ CERN Theory Workshop

HLT Menu: Jet MET

HLT nath	I 1 condition	Thresholds	HLT Rate	Total Rate]
iili paul	El condition	(GeV)	(Hz)	(Hz)	Į
Single-Jet	A_SingleJet150	200	9.3 ± 0.1	70.1	Len Apanasavich
Double-Jet	A_SingleJet150 A_DoubleJet70	150	10.6 ± 0.0	74.4	
Triple-Jet	†	85	7.5 ± 0.1	78.8	
Quad-Jet	‡	60	3.9 ± 0.1	80.5	
$\not\!$	A_ETM40	65	4.9 ± 0.7	84.0	
Acopl. Double-Jet	A_SingleJet150 A_DoubleJet70	125	1.4 ± 0.0	84.0	
Acopl. Single-Jet + E_T	A_ETM30	(100, 60)	1.6 ± 0.0	84.2	-
Single-Jet + $\not\!\!E_T$	A_ETM30	(180, 60)	2.2 ± 0.1	84.4	1
Double-Jet + $\not\!\!\!E_T$	A_ETM30	(125, 60)	1.0 ± 0.0	84.4]
Triple-Jet + E_T	A_ETM30	(60, 60)	0.6 ± 0.0	84.4	
Quad-Jet + E_T	A_ETM30	(35, 60)	1.2 ± 0.1	84.6	
$H_T + \not\!\!E_T$	A_HTT300	(350, 65)	4.4 ± 0.1	86.2	
Single Jet Prescale 10	A_SingleJet100	150	3.5 ± 0.0	87.9	
Single Jet Prescale 100	A_SingleJet70	110	1.5 ± 0.0	89.1	
Single Jet Prescale 1000	A_SingleJet30	60	0.8 ± 0.4	89.9	
VBF Double-Jet + $\not\!\!E_T$	A_ETM30	(40, 60)	0.2 ± 0.0	89.0	
SUSY 2-jet+ E_T	A_ETM30	(80,20,60)	2.0 ± 0.1	90.4	
Acopl. Double-Jet + E_T	A_ETM30	(60, 60)	1.0 ± 0.0	90.4	
		· · · ·	I summaria in terms	· · · · · · · · · · · · · · · · · · ·	

Rates: Pedram Bargassa

HLT Menu: e, γ, τ, b + X

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)
Single Isolated e	A_SingleIsoEG12	15	17.1 ± 2.3	107.5
Single Relaxed e	A_SingleEG15	17	9.6 ± 1.3	109.3
Double Isolated e	A_DoubleIsoEG8	10	0.2 ± 0.1	109.4
Double Relaxed <i>e</i>	A_DoubleEG10	12	0.8 ± 0.1	109.9
Single Isolated γ	A_SingleIsoEG12	-30	8.4 ± 0.7	118.1
Single Relaxed γ	A_SingleEG15	40	2.8 ± 0.2	118.5
Double Isolated γ	A_DoubleIsoEG8	(20,20)	0.6 ± 0.4	119.0
Double Relaxed γ	A_DoubleEG10	(20,20)	1.8 ± 0.5	120.1
High $E_T e$	A_SingleEG15	80	0.5 ± 0.0	120.4
High $E_T e$	A_SingleEG15	200	0.1 ± 0.0	120.4
Lifetime <i>b</i> -tag 1-jet	\$	180	1.3 ± 0.0	120.5
Lifetime <i>b</i> -tag 2-jets	\$	120	2.1 ± 0.0	121.2
Lifetime <i>b</i> -tag 3-jets	\$	70	1.7 ± 0.0	121.8
Lifetime <i>b</i> -tag 4-jets	\$	40	1.8 ± 0.0	122.6
Lifetime b -tag H_T	\$	470	2.5 ± 0.1	123.1
Single $ au$	A_SingleTauJet80	15	0.2 ± 0.0	123.2
$ au + \not\!$	A_TauJet30_ETIM30	15	1.8 ± 0.2	124.7
Double $ au$ (Calo+Pixel)	A_DoubleTauJet40	15	4.9 ± 0.6	129.4
e + b-jet	A_IsoEG10_Jet20	(10, 35)	0.1 ± 0.0	129.4
e + jet	A_IsoEG10_Jet30	(12, 40)	11.6 ± 1.2	135.8
$e + \tau$	A_IsoEG10_TauJet20	(12, 20)	0.2 ± 0.0	135.8
Prescaled e/γ	See Table	3.9	5.0 ± 0.0	140.8
Prescaled μ	See Table	2.3	3.0 ± 0.0	143.8
Min.Bias	A_MinBias_HTT10		1.5 ± 0.0	145.3
Pixel Min.Bias	A_ZeroBias		1.5 ± 0.0	146.8
Zero Bias	A_ZeroBias		1.0 ± 0.0	147.8
	Total HLT rate (Hz	z)		148 ± 4.9

Monica Vazquez Acosta, Marco Pieri, Alessio Ghezzi, ...

Ian Tomalin

Simone Gennai

Greg Landsberg, Duong Nguyen, Len Christofek, Nadia Eram

Marta Felcini

Rates: Pedram Bargassa Sridhara Dasu @ CERN Theory Workshop

HLT Timing Table

Sample	L1 efficiency (%)	L1 eff. $ imes \sigma$ (pb)	Average time (ms)
Minimum bias	<u> </u>		42.7
$egin{array}{c} ext{QCD} \ \hat{p_{ ext{T}}} \in [0,15] \ ext{GeV/c} \end{array}$	0.08 ± 0.01	$(1.50 \pm 0.17) imes 10^8$	31
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [15, 20] ext{GeV/c}$	2.08 ± 0.11	$(3.14\pm0.17) imes10^7$	36
QCD $\hat{p_{\mathrm{T}}} \in [20, 30]\mathrm{GeV/c}$	5.75 ± 0.18	$(3.71\pm0.11) imes10^7$	40
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [30, 50] ext{GeV/c}$	21.70 ± 0.41	$(3.57\pm0.07) imes10^7$	47
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [50, 80] ext{GeV/c}$	63.36 ± 0.84	$(1.38\pm0.02) imes10^7$	53
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [80, 120] \ ext{GeV/c}$	95.96 ± 1.23	$(2.96\pm0.04) imes10^6$	73
$\mathbf{QCD}\hat{p_{\mathrm{T}}} \in [120, 170]\mathrm{GeV/c}$	99.87 ± 1.18	$(4.93\pm0.05) imes10^5$	143
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [170, 230] ext{GeV/c}$	100.00 ± 0.00	$(1.01\pm0.00) imes10^5$	264
$ ext{QCD} \ \hat{p_{ ext{T}}} \in [230, 300] ext{GeV/c}$	100.00 ± 0.00	(2.45 \pm 0.00) $ imes$ 10^4	385
$pp \rightarrow \mu X$	42.96 ± 0.00	$(1.03\pm0.00) imes10^7$	74
W ightarrow e u	92.58 ± 0.00	$(7.31\pm0.11) imes10^3$	280
$W ightarrow \mu u$	84.67 ± 0.00	$(8.38\pm0.08) imes10^3$	123
$Z \rightarrow ee$	99.54 ± 0.00	$(8.16\pm0.05) imes10^2$	739
$Z ightarrow \mu \mu$	99.99 ± 0.00	(7.82 \pm 0.09) $ imes$ 10^2	184
Weighted sum of QCD	, W, \overline{Z} and $pp \rightarrow \mu X$	(contributions	42.9 ± 6.4

Table 9.3: Average processing wall-clock times for running the High-Level Trigger Menu at $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ on L1-accepted events at an idle Core 2 5160 Xeon 3.0 GHz machine.

Time Plot: Tulika & Simone Sridhara Dasu @ CERN Theory Workshop

CM	S HI	T P	P h	ysi	CS	p	eri	orn	na	ance:	<mark>e</mark> γ,	þ	THE UNIVERSITY WISCONSIN MADISON
M	uon HLT	effic	ien	cy fo	or b	enc]	hman Single L	<u>k ch</u>	an	nels			
518		n eff.(%)	cu	muon e	ff.(%)	n	uon eff.	(%)	a	cceptance (%)			
Z -	→ µµ	98.6		(91.)	2		95.8	(70)		98.1		Muon	S
W	$\rightarrow \mu \nu$	86.9					81.4			76.7			
F	ramma H	LT ef	fic	iency	v fo	r he	nchr	nark	cl	nannels			
					<u>y 10.</u>								
	Ciamal manager	Isola	ted	Kelaxe	d Iso	lated	Relaxe	d				T 1 /	
	Signal process	elect	ron	electro	n ele	ctron	electro	e n				Electi	rons
	HIT: $Z \rightarrow ee$	83	3	85.2	6	3.8	64.4						
	HLT: $W \rightarrow e\nu$	62.	5	61.2		-	-						
	L1*HLT: $Z \rightarrow e$	e 80.	.0	82.6	6	2.6	63.2						
	L1*HLT: $W \rightarrow$	$e\nu$ 52.	.1	52.4		2	826				[D1	
	93		lse	olated	Kelax	ed Is	solated	Relaxe	ed			Pho	tons
Signa	l process		S	ingle	singl	e c	double	doubl	le		-		
			pl	hoton	photo	on p	photon	photo	n				
HLT:	$H \rightarrow \gamma \gamma (m_H = 120)$	0 GeV)		80.5	76.8		75.8	75.7					
L1*H	L1: $H \to \gamma \gamma (m_H)$	=120 GeV)	78.8	76.8	6.	75.8	75.7	2				
Sign	nal process	si	ngle h	nigh S	ingle v	erv hi	gh Tot	al		High- E_{T}	EM c	andidat	es
- 0		er	ergy	EM	energ	y EM	0		ัจทท	I_{V} high F_{-} c	its loo	sen_un i	solation)
Z' –	$\rightarrow ee~(M \ge 200~{\rm G})$	GeV)	67		7	.0	67		app	$Ty mgn L_T C$	<i>u</i> ts, 100	sen-up i	solution
Z' –	$\rightarrow ee~(M \ge 500~{ m G})$	leV)	91		6	9	93	3					
Z' –	$\rightarrow ee~(M \ge 1000~{\rm GeV})$	GeV)	94		9	2	98	3		Good	V/7 of	fficien	
Z' –	$\rightarrow ee \ (M \ge 2000 \ G)$	GeV)	90		9	7	98	3					2105
G -	$\rightarrow \gamma\gamma \ (M \ge 2000 \ G$	GeV)	91		9	7	98	3		for muo	n, ega	ımma 🛛	HLT
23 A	August 2007			Sridha	ara Das	su @ (CERN T	Theory V	Wor	kshop			54

HLT efficiency:Higgs

	H [±]	QCD	
	$M_{\rm H} = 200 {\rm GeV} / c^2$	$M_{\rm H} = 400 {\rm GeV}/c^2$	$\hat{p_T}$ 120-170
Level-2 E_T cut	59%	81%	6%
Level-2 Jet Reconstruction			
and Ecal Isolation	81%	85%	53%
Level-2.5 SiStrip Isolation	67%	76%	27%
Level-3 SiStrip Isolation	70%	72%	18%
HLT	23%	38%	0.15%
L1 * HLT	16%	29%	-

HLT efficiency: Z

	$Z \rightarrow \tau \tau$	QCD p _T 120-170
Level-2 jet reconstruction	91%	58%
Level-2 Ecal Isolation	86%	37%
Level-2.5 Pixel Isolation	28%	0.77%
HLT	22%	0.17%
L1 * HLT	8.6%	-

Can increase Higgs/*W*/*Z* → τ efficiencies with different L1 bandwidth, isolation at HLT

HLT Physics Performance: jets & b-jets

Using jet corrections at both L1 and HLT

Minbias

- Scintillators in forward region
 - Technical trigger
- Feature bits
 - Reprogram so that any trigger tower with energy greater than noise will issue a trigger

Jets, Egamma, ...

Can operate the triggers with low thresholds (just a little bit above noise)

Muons

Any muon that makes it (no threshold)

Rate limit at 12.5-50 kHz (1-4 DAQ slices)

- Minbias trigger without prescale for most of the period

Validate L1T and run simple HLT algorithms

- HLT algorithms could be calorimeter and muon based
 - Must quickly align and calibrate tracker for HLT
- Apply thresholds (none applied at L1)
 - Stream data by trigger type
- Calibration triggers
 - ECAL: pizero
 - Jets: gamma + Jet
 - Tracks: $J/y \rightarrow mm$
- Prescale minbias

Rate limit ~150 Hz full events, 1-5 kHz small events Bandwidth limit 1 GB/s

Trigger Summary

LHC Trigger is Challenging

- The choice of physics studied is already made at level-1 trigger
 - Choices made with calorimeter and muon systems only
- Complete object reconstruction at higher level trigger
 - Optimum resolution online with calibration and alignment
 - Includes b/t tagging in high level trigger farms
- 10³² trigger menu done, now preparing menus for 10^{30,31}
- Both ATLAS and CMS have designed trigger systems for golden discovery modes (lepton, diphoton, muti-jets...)
 - Startup triggers setup to restablish the Standard Model
 - Pickup searches for new particles where left off by Tevatron
 - Definitive exploration of higgs sector is assured
 - Exploit qqH, WH, ttH production to cover difficult regions
- Innovative designs may allow more measurements
 - Topological selection starting from level-1
 - Measurement of Yukawa couplings
 - Low mass & some MSSM higgs decays to t t (hadrons), $\chi\chi$ (invisible)

