The AMS detector: a particle physics experiment in space

April 19th, 2006

The universe is the ultimate laboratory to study fundamental physics..

.....reaching energies which cannot be studied at accelerators......

High Energy Cosmic Rays in the Universe

Messengers are photons, charged/neutral particles, gravitational waves......

The purpose of the AMS experiment is to perform accurate, high statistics, long duration measurements in space of

- energetic (0.1 GV few TV) charged CR
- energetic (>1 GeV) gamma rays.

AMS is a particle physics experiment:

Alpha Magnetic Spectrometer - AMS-01

First flight, STS-91, 2 June 1998 (10 days)

PHYSICS REPORTS

A Review Section of Physics Letters

THE ALPHA MAGNETIC SPECTROMETER
(AMS) ON THE INTERNATIONAL
SPACE STATION: PART I – RESULTS FROM
THE TEST FLIGHT ON THE SPACE SHUTTLE

M. AGUILAR et al. (AMS Collaboration)

ST ISSUE OF THIS VOI

NORTH-HOLLAND http://www.elsevier.com/locate/physrep

Magnetosphere effects

AMS has flown in space during a period of solar maximum

At low energy (below cutoff, up to R \sim 15 GeV) latitude dependence and solar modulation influence the spectra

At high energy (above R~ 20 GeV) the measurement of the primary flux should give the same result in experiments performed at similar solar activities (LEAP, IMAX, CAPRICE, BESS, AMS)

to 140 GV then \overline{He} / He is < ~ 1.1 10⁻⁶

International Space Station

February 2006 August 2005

Final configuration

AMS is an International Collaboration NASA provides: Three shuttle flights and Mission Management at JSC S. C.C. Ting - Spokesperson **ROMANIA CHINA** TTALY **DENMARK UNIV. OF AARHUS** BISEE (Beijing) **UNIV. OF BUCHAREST CARSO TRIESTE FINLAND** USA CAST (Beijing) **IROE FLORENCE** CALT (Beijing) A&M FLORIDA UNIV HELSINKI UNIV. **RUSSIA** INFN & UNIV. OF BOLOGNA **KOREA** IEE (Beijing) UNIV. OF TURKU JOHNS HOPKINS UN **INFN & UNIV. OF MILANO** IHEP (Beijing) **EWHA** MIT - CAMBRIDGE INFN & UNIV. OF PERUGIA **FRANCE** SJTU (Shanghai) KYUNGPOOK NAT.UNIV. NASA GODDARD SPACE FLIGHT CENTER INFN & UNIV. OF PISA KURCHATOV INST. **GAM MONTPELLIER** SEU (Nanjing) NASA JOHNSON SPACE CENTER INFN & UNIV. OF ROMA MOSCOW STATE UNIV. LAPP ANNECY SYSU (Guangzhou) UNIV. OF MARYLAND-DEPT OF PHYSICS INFN & UNIV. OF SIENA LPSC GRENOBLE SDU (Jinan) UNIV. OF MARYLAND-E.W.S. S.CENT SPAIN **NETHERLANDS** YALE UNIV. - NEW HAVEN **GERMANY** CIEMAT - MADRID ACAD. SINICA (Taiwan) RWTH-I **ESA-ESTEC** I.A.C. CANARIAS. CSIST (Taiwan) **MEXICO** RWTH-III **NIKHEF** NCU (Chung Li) MAX-PLANK INST. **UNAM** NI R **SWITZERLAND** NCKU (Tainan) UNIV. OF KARLSRUHE **ETH-ZURICH** NCTU (Hsinchu) **PORTUGAL** UNIV. OF GENEVA NSPO (Hsinchu) LAB. OF INSTRUM. LISBON

AMS: A TeV Magnetic Spectrometer in Space

G.F. $5000 \text{ cm}^2 \text{ sr}$ Exposure > 3 yrs

0.3 TeV	e -	e +	P	He	γ	
TRD	~~~~	*			¥	
TOF	т	т	T	7	7	
Tracker	/	/	/	/	\wedge	
RICH	0	0	0	O	٥	
Calorimeter		\bigwedge	T T T T T T T T T T T T T T T T T T T	1	M	\bigwedge

 $dP/P^2 \sim 0.004 \implies MDR = 2.5 \text{ TV}, \text{ h/e} = 10^{-6} \text{ (ECAL +TRD)}$

AMS-02 goals and capabilities

Cosmic rays spectra and chemical composition up to 1 TeV

Search for Antimatter in Space

Search for Dark Matter

AMS will identify and measure the fluxes for:

- p for E < 1 TeV with unprecedented precision
- e+ for E < 300 GeV and e- for E < 1 TeV (unprecedented precision)
- Light Isotopes for E < 10 GeV/n
- Individual elements up to Z = 26 for E < 1 TeV/n

Absolute fluxes and spectrum shapes of protons and helium are important for calculation of atmospheric neutrino fluxes

Composition and spectra are important to constraint propagation, confinement, ISM density

Protons and helium

- AMS will measure H & He fluxes for E < 1 TeV
- after 3 years will collect $\approx 10^8$ H with E > 100 GeV
- and $\approx 10^7$ He with E > 100 GeV/n

Electrons and positrons

Energetic e+/e- cannot diffuse more than few kpc: they are sensitive probes of the Local Bubble and its neighbourhood.

Nuclei separation

Charge measurement:

TOF, Tracker and RICH

Verified by heavy ion beam tests at CERN & GSI.

Light isotopes

Hydrogen and helium isotopes (deuterium and ³He) are important tests of Big Bang nucleosynthesis which is their main source.

AMS-02 will identify D and ³He up to 10 GeV/n

After 3 years AMS-02 will collect about 10⁸ D and ³He

¹⁰Be/⁹Be – radioactive clock

- 10 Be ($t_{1/2} = 1.51$ Myr) is the lightest β -radioactive secondary isotope having a half-life comparable with the CR confinement time in the Galaxy.
- In diffusion models, the ratio ¹⁰Be/⁹Be is sensitive to the size of the halo and to the properties of the local interstellar medium

AMS will separate ¹⁰Be from ⁹Be for 0.15 GeV/n < E < 10 GeV/n after 3 years will collect ≈10⁵ ¹⁰Be

Search for antimatter at the 10⁻⁹ level of sensitivity with AMS-02 on the ISS

y97089_1p.ppt

AMS sensitivity to anti D

100 Years of Super Conductivity

Normal conduction Wire

Metal atoms oscillate ⇒ cause friction ⇒ HEAT

Super-Conduction at -270° C (Kammerlingh-Onnes 1911)

Metals: Pb, Nb, Ti ⇒ Atoms rest, Cooper pairs of electrons move frictionless (Quantum Mech.)

Quench: loss of superconductivity due to relative motion of wire => friction => heat

Nobel Prizes in:

1913	H. Kammerlingh-Onnes Discovery of Superconductivity
1972	J. Barden, L.Cooper, J.Schrieffer Theory of Superconductivity
1987	G.Bednorz, A.Müller High temperature Superconductivity
2003	A.A. Abrikosov, V.L. Ginzburg, A.J. Leggett Theory of superconductors and superfluids

y01K530_05.ppt

There has never been a superconducting magnet in space, due to the extremely difficult technical challenges

STEP ONE: Develop a Permanent Magnet in Space

1- Stable: no influence from earth magnetic field

2- Safety for the astronauts:
No field leak out of the magnet

3- Low weight: no iron

STEP TWO: Develop a Superconducting Magnet in Space

With the same field arrangement as the permanent magnet:

Except it has 10,000 Gauss field = 1 T

AMS-02: Superconducting Magnet

- 14 superconducting coils
- Geometrical configuration to ensure a null magnetic dipole moment
- Indirect cooling system based on superfluid helium
- Helium vessel: 2500 liters
- Dimensions: inner diameter 1.1m, weight: 2360 Kg
- \bullet an intense magnetic field: $\sim 0.9~{
 m T}$
- ullet a large bending power: $\sim 0.8~{
 m T.m^2}$
- All coils are produced, tested individually at 1.8 K and assembled
- Magnet delivered to CERN where the integration will start in 2006

R.H. MacMahon he-24

It is not possible to quench the coils except by outside heating

Technical achievement to eliminate quench for AMS-02

(3) High precision winding (no friction)

(4) The smallest cross section cable (to minimize weight and power)
y2K102gb ETH

Welding of the He tank

ARESSET Bibs

Radiation Shield

Vacuum Case

AMS-02 VC/SFHe Tank Micrometeoroid & Orbital Debris Hypervelocity Impact Test Photos

Micro-meteoroic and Orbital Debris Testing of AMS Cryomagnet System

Shows hole made in Vacuum Case Layer from 5 mm Aluminum Orbital Debris Particle shot at ~15,000 mph

~12 in.

Micro-meteoroid & Orbital Debris Testing

Shows damage to SFHe tank do to 5 mm Aluminum Orbital Debris Particle – Tank not punctured

Status

- All coils have been individually tested.
- Magnet assembly is complete.

Magnet test facility

• Magnet test facility design is nearing completion.

SJTU (Shangai)

Transition Radiation Detector (TRD)

Functional tests of TRD

All modules have been produced

AMS-02: Transition Radiation Detector

- Modules (328) made of fleece radiator and straw tubes
 - $-E_{\gamma} \sim \gamma ({
 m eV})$
 - Emission probability small (10^{-2}) $N_{\gamma} \sim \alpha N_{transitions}$
 - TRD photons detected in proportional straw tubes Xe/CO_2
- 20 layers assembled in an octogonal shape structure
- Separation of e⁻/e⁺ from p̄/p up to 300 GeV
- 14 layers with 220 modules inserted in supporting structure
- Detector finished in Spring 2006

Transition Radiation Detector (TRD)

CO₂ tank
Tank weight 1,85 kg filled with 4.5kg Isopropyl alcohol

"Box S" Assembly & Test

MV197 valves assembly weight 2,5kg

Two Marotta valves assemblies weight 0,75 kg each

Four Marotta valves assembly weight 2.95 kg

TRD Performances

20 layer
prototype
tested with
e-, μ-, π+, p+

Proton rejection >10²

reached up to 250GeV with 90% electron efficiency

AMS-02: Time-of-Flight Detector

- 4 scintillator planes
- A total of 34 crossed scintillator paddles, 1.6 m²/plane
- ullet Light guides twisted/bent and photo-tubes aligned with $ec{B}$
- Principle trigger detector for charged particles
- Upgoing/downgoing particle separation
- Velocity measurement with $\Delta \beta/\beta \sim 3\%$ for protons
- ullet Absolute charge measurement (up to $Z\sim 20$)
- ▷ All scintillator paddles produced
- ⊳ Ready for integration in 2006

F. Giovacchini he-21 V. Bindi he-15 L. Quadrani he-21

TOF assembly - Test mounting of Lower TOF

Silicon Tracker

All 8 planes, 300,000 channels have been produced

AMS-02 Spectrometer: Silicon Tracker

- Precise localisation of charged particles by double sided silicon sensors
- \bullet 8 layers of $\sim 0.8~\mathrm{m}^2$ on five ultra-light supporting planes
- Total of ∼2500 silicon sensors
- 8 independent position measurements of a particle with $\sim 10 \mu m$ resolution in bending direction, $\sim 30 \mu m$ orthogonal
- ullet Particle rigidity $R=rac{\operatorname{pc}}{|Z|\operatorname{e}}$ up to a few TV
- ullet Electric charge (Z) from energy loss dE/dx. Identification of elements up to iron possible
- Direction and energy of converted photons
- ▶ 100 % of sensors mounted
- ▷ All 8 layers equipped by December 2005

P. Zuccon he-24

Trends in applications of silicon sensors in tracking detectors

Silicon Area vs. # of Electronics Channels

AMS
Silicon Tracker
has pioneered
in 1998
large
scale utilization
of microstrip silicon
detectors in space

Construction of the Silicon Tracker

Storage in N₂ gas

AMS-02 Silicon Spectrometer Rigidity Resolution/

Accurate measurement of cosmic radiation for all atomic nuclei

Test results from accelerator using both RICH and Tracker 158 GeV/N

Tracker Thermal Control System

Two-phase pumped CO₂ loops

The most advanced cooling technology for space

Key technology for robotic or manned space exploration

AMS-02: Ring Imaging Cherenkov Detector

- Proximity focusing Ring Imaging Detector
- 2 different radiators:
 Aerogel, n=1.05, 2.7 cm thickness
 Sodium fluoride, n=1.336, 0.5 cm thickness
- Conical reflector
- Photomultiplier matrix (680)
- ullet velocity measurement from emission angle $\Delta eta/eta \sim 0.1\%$ for single charge particles
- Number of photo-electrons measures Z $\Delta Z \simeq 0.2$ -0.25 up to Fe
- directional sensitivity
- RICH is currently being assembled
- will be integrated in AMS in June 2006

F. Barao og-15

Test from Accelerator Measurements of Cosmic Nuclei

1

AMS-02: Electromagnetic Calorimeter

- Lead scintillating fiber sandwich (640 kg), 3D sampling by crossed layer
- $\bullet \sim 17 X_o$ radiation lenghts
- 9 superlayers piled up disposed along
 Y and X alternately
- ullet Energy resolution (GeV) $\Delta E/E \simeq 10.1\%/\sqrt{E} \oplus 2.6\%$
- ullet Distinction between hadrons and \mathbf{e}/γ by shower shape
- \bullet Protons supressed by 10^{-4} up to 500 GeV. Together with TRD, rejection of hadrons/electrons $\geq 10^6$
- Independent γ detector, angular resolution $\sim 2^{\circ}$, γ independently triggered

IHEP Beijing

- ▷ All superlayers installed in mechanical structure
- ⊳ Final calibration in e⁻ test beam in 2006

1- Italy

Fibers and Lead foils are piled up and glued together to form a module

9 Modules are glued together to form a superlayer

2- Beijing

The superlayers are inserted in the mechanical support structure.

Space qualification in Beijing

3- Annecy

Instrumentation

Preparation of assembly in clean room

Integrated circuit

Assembly of Light collection blocks

Complete calorimeter

ECAL Structural Testing

IHEP CALT (Beijing)

2008

Thermal vacuum test at ESA, Holland

Conclusions

- Cosmic Rays carry important informations about the non thermal universe
- AMS-02 has been designed to measure with ppb accuracy primary CR composition up the TeV region
- These accurate measurements will allow to undertand propagation and confinement mechanisms in our Galaxy
- The study of the rare components would allow to search for new phenomena (Dark Matter, strangelets) or to better constrain fundamental issues like the existence of primordial antimatter

Addressing fundamental questions aiming for a breakthrough

<u>Accelerator</u>	Original purpose	<u>Discovery</u>
AGS Brookhaven (1960)	π N interactions	2 kinds of neutrinos, Breakdown of time reversal symmetry, 4-th Quark
FNAL Batavia (1970)	neutrino physics	5-th Quark, 6-th Quark
SLAC Spear (1970)	ep, QED	Partons, 4-th Quark, 3rd electron
PETRA Hamburg (1980)	6-th Quark	Gluons
Super Kamiokande (2000)	Proton Decay	Neutrino Oscillation
Hubble Space Telescope	Galactic Survey	Curvature of the universe
	Odivey	
AMS on ISS	Dark Matter Antimatter	?