

Research on Vacuum Plume and Its Effects

Cai Guobiao

III° International Conference on Particle and Fundamental Physics in Space Beijing 19 - 21 April 2006

Introduction

- Numerical Simulation
- Experimental Validation and Research
- Plume WorkStation (PWS)
- Application
- Conclusion

Introduction

- Over the past five decades, great success has been achieved in space technology.
- Space technology have greatly advanced the development of society.
- Currently, about 800 satellites are in orbit. 48 satellites were launched in 2005.

Accidents Caused By Plume Effects

Gemini

Observation windows contaminated.

BSE-1

Solar cell surface contaminated.

Voyager

Thrust decreased 22% on average. Torque lost 60%.

Mariner 10

Lifetime of spacecraft seriously reduced.

Semi-experiential and analytical methods

Experimental research

Ground Experiment
Flight Experiment

Numerical simulations

♦ N-S / DSMC Method

DLR STG

Combined N-S Equations & DSMC Method

Nozzle flow simulation

♦ N-S equations (Difference solving)

Plume outside nozzle

• Boltzmann equation (DSMC)

Typical Numerical Simulation

Main research work

- ◆ 1989, S.Parvez et al. , The impact of vacuum plume to solar array.
- 1991, I.D.Boyd and P.F.Penko, Test and simulation on low density vacuum plume of small thruster.
- 1992 and 1993, R.I. Samanta Roy, et al. Test and simulation on ion rocket motor vacuum plume contamination.
- ♦ 1993, John J. Scialdone et al, Plume contamination controlling.
- ◆ 2000, M.S.Ivanov et al, Simulation of thruster nozzle plume.
- 2002, J.H.Park et al, Analysis of the interaction between thruster plume and satellite components.
- 2004, Henry A. Carlson et al, Hybrid CFD-DSMC method to model continuum-rarefied flows.

Typical Numerical Simulation

Typical software

Software Name	Country/Company
CONTAM III	USA/Science Application International Corporation
SMILE	Russia /ITAM
DS2V/DS3V/DSWT	Australia/ GAB Consulting Pty Ltd

Research Focus of BUAA

Numerical Simulation

Nozzle Flow Simulation

- Plume Simulation
- Flow Chart of DSMC Method
- Typical Axially Symmetric Calculation
- Typical 3-D Calculation
- DSMC Parallel Calculation

Nozzle Flow Simulation

Governing equations

Axially-symmetric N-S equations

Turbulent model

The Baldwin-Lomax model

Difference method for solving N-S equations

MacCormack scheme

Mesh treatment

TTM method

Boundary condition

Inlet, exit, the symmetric-axis and solid wall surface boundary condition.

The pressure and density at the nozzle exit of the attitude control thruster are relatively low. The DSMC method is adopted to simulate vacuum plume entirely outside the nozzle.

Basic assumption

- **Only binary collisions are considered.**
- □ Neglect internal degree of freedom and chemical non-equilibrium effect.
- **The entire gas flow is steady.**
- **The interaction force between molecules is neglected.**

In the DSMC method, parallel calculation is needed for large scale and high speed computation.

Experimental Validation and Research

- Experimental Validation of PWS
- Experimental Study—Plume Aerodynamic Force

Experimental Study—Plume Aerodynamic Thermal Effects

China Aerodynamic Research and Development Center (CARDC) has a supersonic low density wind tunnel, which can simulate high-altitude environment from 60km to 90km.

l: link segment 2: supplying gas pipeline 3: front chamber
 4: nozzle of wind tunnel 5: thruster

Plume Validation

Model thruster nozzle

Satellite attitude control thruster nozzle

Experimental Validation of Numerical Simulation Software

Model Thruster Nozzle

	Nozzle 1	Nozzle 2	Nozzle 3
Thrust F/N	2.	2.	0.5
Scared	1	45°	1

Case	Nozzle	P_0/MPa	T ₀ /K
1	1	1.0	300
2	1	0.5	300
3	2	1.0	300
4	2	0.5	300
5	3	0.11	300

Plume structure (Case1 and glow discharge image)

Pressure along axis

Density contour (Case1)

discharge image)

Experimental Validation of Numerical Simulation Software

Satellite Attitude Control Thruster Nozzle

	Nozzlei	Nozzle2
Thrust N/F	10.	10.
Aero ratio $(D_e/D_s)^2$	199.7511	96.04
Diameter D _e /mm	42.6	29.4

Case	Nozzle	P_/MPa	T ₀ /K
1	1	0.8	773
2	1	0.1	773
3	2	0.8	773
4	2	0.1	773

Plume structure (Glow discharge image of Case1)

Plume pressure (Case3)

Experimental Study—Plume Aerodynamic Force

Model Thruster Nozzle

Plume structure (F=2N nozzle and F=2N scarred)

Pressure distribution on plate (Case2)

Satellite Attitude Control Thruster Nozzle

Plume structure (F=10 N nozzle2)

Aerodynamic Thermal Effects Measurement

$$q_{W} = \rho \cdot c \cdot b \cdot \frac{dT}{dt}$$

Results

Result on Horizontal Plate Surface

Result on Backflow

Plume WorkStation (PWS)

Numerical Simulation Software—*Plume WorkStation*

BUAA

Particle movement simulation (single species)

Particle movement simulation (multi-species)

Particle movement simulation (single species with baffle)

Particle movement simulation (multi-species with baffle)

_

Application

Applications

☆ **"DFH-4" Communication Satellite**

Applications---- "Shenzhou" Spaceship

BUAA

Velocity vector in nozzle

Velocity vector of plume

Shenzhou

Density contour of plume

Applications---"Chang'e" Satellite

BUAA

Density contour contrast between H₂O and N₂

Chang'e

Pressure and heat flux distribution on satellite surface

Applications--- "DFH-4" telecommunication satellite

BUAA

- A new software PWS developed at BUAA can simulate the vacuum plume.
- The experimental validation of PWS shows that PWS works effectively.
- Research on vacuum plume is conducted for

typical engineering applications.

Further work concerning plume effects will be conducted based on more advanced experimental systems.

Thank You