

Forum on Tracking Detector Mechanics 04 July 2012

Survey and Large Scale Metrology of Tracking Detectors for LHC Experiments From prototypes to final installations

Antje BEHRENS, Jean-Christophe GAYDE, Dirk MERGELKUHL (CERN BE-ABP-SU-EM)

- BE-ABP-SU Experiment metrology team
- Mandate:
 - Provide forms, dimensions and positions for all elements
 - Alignment of structures and detectors
 - During assembly and when all is closed
- This includes:
 - Prototypes, deformation tests, quality control, (pre-)assembly, alignment

Survey instrumentation

- Toolbox
 - Level
 - Theodolite
 - Photogrammetry
 - Special equipment
- A few times also
 - Laser Scanner
 - Laser Tracker

→ Line of sight between instrument and object required!

- Image acquisition needs no stable station
 - Photos taken on platform or scaffolding
 - Photos taken from cherry-picker during installation in cavern
- Mobile System with 'high' precision
 - Off-site interventions in factory (Pisa, Aachen...)
 - Clean rooms, assembly halls and experimental caverns
 - Inner detector components < 1m (1 sigma < 50 microns)
- Limited measurement time for large amount of points
 - Short interruption for installation, production process
- Camera system
 - PC (windows XP, W7)
 - Nikon D2X
 - Wireless module
 - Different lenses (17-24 mm)
 - Ring flash

- References
 - Carbon fibre scale bars (max. 1.5 m)
 - Calibration on CMM
 - Geodetic measurements
 - Total station
 - Laser tracker
- Software
 - AICON 3D Studio V. 10.0 DPA PRO
- Targets
 - Coded / non-coded
 - Retroreflective / non-retroreflective
 - Button targets Hubbs / GMS / Aicon

System optimized for measurement of signalized points only = highest precision → We have to touch the detector

- Survey reference point
 - 3D survey reference hole for different survey targets
 - ➔ best solution, highest flexibility
- Define survey reference holes on detector
 - Already early in the design phase
 - Reference hole accessible and visible during all phases
 - Position on stable support
 - On individual detector elements as later on assembled groups
 - For theodolite and photogrammetry
 - Coordinates are given for centre of survey target
 - Sensitive elements are referred to reference holes by constructor

8H7 reference hole

• Discussion with physicist/engineer/designer for each tasks

- Define precisely the needs for geometrical control / alignment / survey
- Define the stages when survey will be needed
- Find reasonable solutions
- Include alignment to the design
- Define local coordinate system
- We have to adapt to the experimental schedules
- Typically demanded precision
 - Detector control at manufacturing before assembly
 - 0.03-0.3 mm (max. 0.5 mm)
 - Relative position of detectors wrt other detectors
 - < 0.5 mm
 - Absolute position of detectors wrt accelerator geometry
 - < 1.0 mm
 - Deformation of detectors under special conditions
 - ~ 0.1 mm

- Local network
 - Tripods bolted to the floor
 - Support points permanently fixed on walls / stable pillars
 - Temporary network points glued around detector
- Stable floor for theodolite measurements (concrete foundation)
- Access to detector for installation of survey target
- Line of sight between instrument station and points
- Constant temperature for significant results for dimension

Not so stable...

- Survey of prototypes
- Mockup tests
- Alignment of support structures
- Alignment for bonding tools
- Fiducialisation and geometrical control
- Fiducialisation sensitive detector elements
- Measurement at construction site
- Transfer to new references
- Integration of detectors on surface
- Deformation control
- Envelope measurements
- Alignment in cavern

CMS TOB (Tracker Outer Barrel) – Prototype support structure 'big wheel'

- Photogrammetric measurements 1998 2000
- Reference holes on different layers
- Comparison to theoretical coordinates
- Circularity
- Comparison of two discs
- Alignment of two discs
- Deformation test

ALICE ITS dummy – insertion test in TPC

- Deformation measurement of ITS supports after charge with ITS dummy
- Repeatability of ITS dummy insertion
- ITS has been inserted 4 times, rails have been disconnected
- Relative precision 0.1mm in radial and vertical direction (1 sigma)

ATLAS ID trolley, Floor rails and Cantilever for SCT insertion

- Level and theodolite measurements
- Alignment of ID trolley frame and detector rails
- Alignment of ID trolley rails on floor
- Alignment of cantilever tool for SCT insertion
- to prepare for smooth insertion of SCT in TRT
 Problem:
- False floor in SR1
- But theodolite requires a stable support
- Only few areas with concrete foundation
- Limited possibilities
- Reduced precision

ATLAS – Alignment of Pixel jig in bonding tool

- Photogrammetric measurement of the bonding tool inside and outside
- Circularity
- Afterwards alignment of the pixel jig to outside of bonding tool
- Precision 0.03mm in X-,Y- and Z-direction (1 sigma)

CMS TIB/TID – transfer from TIB Layer 1-4 to outer reference points

- Reference holes on TIB layer 1-4
- Referred to outer references on TID face (visible after insertion in TOB)
- Circularity and concentricity of Layer

CMS TIB/TID – transfer from TIB Layer 1-4 to outer reference points

- 170 images
- 180 object points
- Precision in X-, Y- and Z-direction 0.05mm (1 sigma)
- 3D view of object points and images
- Geometry of intersection for each point
- → precision
- Underexposed images
- → robustness

LHCb IT (Inner Tracker)

- Measurement in clean room by microtriangulation
- Angular observations of sensor fiducials
- White cross on black background of 0.3mm x 0.3mm
- Illumination by cold light, no optical disturbance
- Calibrated scale bars
- Transfer to outer references visible during insertion of all elements in IT box
- Precision in X-, Y- and Z-direction 0.05mm (1 sigma)

12 IT detectors

CMS TEC +/- (Tracker End Caps)

- Several photogrammetric measurements at RWTH Aachen during construction phase
- TEC = 9 support disks for detector elements + 1 Back Disc
- Each with 4 reference points on circumference
- Assembly control in vertical position
- Deformation control in horizontal position

CMS TEC (Tracker End Cap)

- Fiducialisation = transfer to outer references on Back Disc
 - 3 Support points for Alignment ring
 - 4 additional adapter on outer circumference
- Control with final supports
- Envelope measurement of protection skins

ATLAS SCT barrel – transfer to four new reference points

- Reference points not visible in future due to thermal enclosure
- Geometrical detector information transfered to new reference points

- Each transfer to new reference means loss of precision
- Number of transfers should be reduced to a minimum

CMS Tracker integration in TST (Tracker Support Tube)

- Theodolite and photogrammetric measurements in clean room
- Network stations around TST = steel tripods fixed to floor
- Reference points TST:
 - Rail ends
 - Each face four 'ears'
 - Each face four brass adapter
- Each detector measured wrt TST reference points
- BUT: Deformation of hidden central detectors due to advancing installation can not be detected by classical survey methods

CMS Tracker integration in TST (Tracker Support Tube)

• TOB; TIB/TID+; TIB/TID-; central PST; TEC+; TEC-; forward PST

ATLAS pixel support tube – load test

- Leveling at 3 different load levels:
- Without charge, 2180g each end, 5080g A side and 5120g C side
- Measurement in 2 rotations of the pixel support tube
- Precision 0.05mm in vertical direction (1 sigma)

ATLAS TRT Barrel – photogrammetric measurement of inner cylinder

- 16 lines of target tape with 31 targets each
- Only signalized points
- 450 Images, 1700 object points, 124000 observations in bundle adjustment
- Precision 0.06mm in X-, Y- and Z-direction
- Cylindricity
- Comparison to measurement with Romer arm by PH/DT

ATLAS ID services – Scanning of LAR Barrel face

- Laser scanner Faro Photon 80 contract work in 2009
- 16 and 12 Scanner stations on scaffolding each side
- Point distance between adjacent points 1mm to 3mm
- Precision in X-, Y- and Z- direction 3mm (1 sigma)
- Transformation in ATLAS coordinate system
- Point cloud has been reconstructed with Geomagic Studio
 - Automatically and manually filtered and cleaned → very time consuming
 - Meshing has been performed (point cloud to triangular mesh)
 - Mesh has been cleaned, small holes filled up
 - Exported to Catia

Missing elements In central part!

Pre-processing from days to weeks depending on object complexity!

ATLAS ID barrel - alignment in IWV

- Relative alignment of TRT/SCT to Inner Warm Vessel
- Precision 0.3mm in X-, Y- and Z-direction (1 sigma) in IWV coordinate system
- Precision 1.0mm in X-, Y- and Z-direction (1 sigma) in ATLAS coordinate system

- Leica HDS 6200
 - Up to 1 000 000 points per second
 - Point position accuracy at 5m = +-3mm
- Hexagon Metrology AT401 Laser tracker in theodolite housing
 - As flexible and light as theodolite
 - Precision at 5m distance 0.03mm typical (1 sigma)
 - In addition mechanical precision for target and reference hole has to be included in the error budget

- All LHC experiments had survey requests for tracking detectors during
 - Construction
 - Validation / test phase
 - Installation
- Part of requests with highest precision demands
- Often fulfilled by photogrammetric measurements
- Some with special methods / equipment
- Adaptation to working condition
- Costs have been also shared by LHC experiments
- Permanent contact between SU and detector responsible

- Need to include the survey team very early in the project
- Define carefully the control and alignment needs
 - What has to be measured?
 - With respect to what?
 - At what stage?
 - Where?
 - What is the required precision / error budget?
- SU participation to design at early steps integration of reference holes
- Definition of reference holes and special equipment (adapter...) needed by SU
- First fiducialisation of sensitive elements at construction site
- ➔ references carry the detector geometry information

If there are NO references there is a risk that NO precise survey can be performed!

 Future detectors will be become more complex – we have to adapt survey techniques and references

Thank you!