The ALICE low-mass silicon tracker ALICE

R. Santoro On behalf of the ALICE ITS

Outlook

ALICE

- Introduction
- ITS pointing resolution performance
- Focus on the SPD components and material budget
- Towards the ITS upgrade

The ALICE experiment

Dedicated heavy ion experiment at LHC

Study of the behavior of strongly interacting matter under extreme conditions of high energy density and temperature

Proton-Proton collisions

- Reference data for heavy-ion program
- Genuine physics (momentum cutoff <100MeV/c, excellent PID, efficient minimum bias trigger)

Barrel Tracking requirements ($|\eta| < 0.9$)

- Robust tracking for heavy ion environment
 - Mainly 3D hits and up to 150 points along the tracks
- Wide transverse momentum range (100 MeV/c - 100 GeV/c)
 - Low material budget (13% X0 up to the end of TPC)
 - Large lever arm to guarantee good tracking resolution at high pt

PID requirements over the large momentum range

 Combined PID based on several techniques: dE/dx, TOF, transition and Cherenkov radiation

The ALICE Inner Tracking System

The ITS role in ALICE

- Secondary vertex reconstruction (c, b decays)
 - Good track impact parameter resolution (< 60 μ m (r ϕ) for p_t > 1 GeV/c in Pb-Pb)
- Improve primary vertex reconstruction and momentum resolution
- Tracking and PID of low p, particles
- Prompt L0 trigger capability (<800 ns)
- Measurements of charged particle pseudorapidity distribution
 - First Physics measurement both in p-p and Pb-Pb

Detector requirements

- Two dimension detectors to handle high particle density
- Good spatial precision
- High efficiency
- High granularity (\approx few % occupancy)
- Minimize distance of innermost layer from beam axis (mean radius ≈ 3.9 cm)
- Limited material budget
- Analogue information in 4 layers (Drift and Strip) for particle identification in $1/\beta^2$ region via dE/dx

ITS: 3 different silicon detector technologies

Strip Drift **Pixel**

TPC

R. Santoro

L3 Magnet

ITS parameters

Layer	Det	Radius (cm)	Length (cm)	Surface (m2)	Chan.	Spatial precision (mm)		Cell (µm2)	Max occupancy central PbPb	Material Budget	Power dissipation (W)	
						rφ	z		(%)	$(\mathcal{N} \Lambda \Lambda_0)$	barrel	end-cap
1	SPD	3.9	28.2	0.21	9.8M	12	100	50x425	2.1	1.14	1.35k	30
2		7.6	28.2						0.6	1.14		
3	SDD	15.0	44.4	1.31	133 K	35	25	202x294	2.5	1.13	1.06k	1.75k
4		23.9	59.4						1.0	1.26		
5	SSD	38.0	86.2	5.0	2.6M	20	830	95x40000	4.0	0.83	850	1.15k
6		43.0	97.8						3.3	0.86		

Transverse impact parameter

nointing angle

D'reconstructed momentur

Few hundred micron

secondary vertex

D'flight line-

primary ver

arameters ~100 µ m

- A key plot to quote the tracker performance in terms of track and vertex reconstruction is the transverse impact parameter in the bending plane: d₀(rφ)
 - Distance between the track projection and the vertex position reconstruction in the bending plane
- The material budget mainly affect the performance at low p_t (multiple scattering)
- The point resolution of each layers drives the asymptotic performance

Some considerations

- ALICE
- The key requirements to obtain good tracking performance are:
 - Small channel dimension
 - Low material budget
 - First layer as close as possible to the interaction point
- From now on I will show how these requirements have driven the design of the silicon pixel detector in ALICE
 - Channel dimension: 50 μ m (r ϕ) x 425 μ m (z)
 - Material budget: 1.14 % of X0
 - Mean sensor radial position of the first layer = 39 mm
 - Beam pipe outer radius = 29.8 nm

Silicon Pixel Detector (SPD)

• Grounding foil: Aluminum-polyimide foil (25 + 50 µm thick)

- Reference ground for the half-stave
- The 11 openings are needed to improve the thermal coupling between the electronics and cooling duct via thermal grease
- ► X/X0 = 0.03 %

- Ladder: Sensor + FEE chip $(200 + 150 \mu m \text{ thick})$
 - A p+n silicon sensor matrix with 40960 pixels arranged in 256 rows and 160 columns
 - Pixel cell: 50 μ m (r ϕ) x 425 μ m (z)
 - 5 FEE chips Flip-chip bonded to the sensor through Sn-Pb bumps
- X/X0 = 0.38 %

- CMOS process (6 metal layers)
- Radiation tolerant design (enclosed gates, guard rings)
- ~100 μ W/channel
- ~ 1000 e- mean threshold (~ 200 e-RMS)
- ~120 e- mean noise

- Multi Chip Module (MCM)
 - 5-metal-layer SBU substrate (Polyimide copper) \approx 350 µm thick
 - Four ASICs produced in standard 0.25 µm CMOS technology with radiation hardness layout techniques
 - Analog Pilot, Digital Pilot, Giga-bit optical link (GOL) and RX40 to convert the optical link into electrical signals
 - A custom developed optical package 1.2 mm thick (STMicroelectronics) with three single-mode 1310nm optical fibers to communicate with the counting room

- 5-layer polyimide/aluminum (280 μm thick) bus to connect front-end chips and MCM
 - The aluminum was used to reduce the impact on the material budget
 - Almost 30% of reduction replacing Cu with Al
 - The bus distributes power/ground to the FEE chips (two 50 μm thick Al-layers)
 - The other three layers are used to carry data/control lines
 - The step side is needed to allow access to the different planes for the interconnection bonds
 - Decoupling capacitors and PT1000 are integrated on the top
- Overall X/X0 = 0.48 %

Sector components

• Carbon fiber support structure

- ▶ 1/10 of the 2-layer barrel structure
- Two layers of unidirectional high-modulus carbon fiber tapes 100µm thick
- The central part is 200µm thick while ends are thicker (600µm) to allow the precise positioning and fixing
- The special design allows to accommodate the cooling pipes and to overlap the half-staves in rφ.
- > The global and local deformations of the CFSS are of the order of 1 μm

Carbon Fiber Support

Sector (CFSS)

Sector components

6 Cooling pipes / sector (2 for layer 1 and 4 for layer 2)

- Phynox pipes with 3mm diameter and 40μm wall
- Squeezed to 0.6 mm (inner size) to enlarge the thermal coupling surface
- Embedded to the CFSS

Manifold (steel), fittings (copper) and 6 capillaries (0.85 mm OD) in coppernickel alloy to feed the cooling pipes

R. Santoro

Foru

Carbon Fiber Support

Sector components

• The Cooling is based on evaporative system with C4F10

- Thermal contact between the cooling pipe and the FEE chips is performed with thermal grease (AOS 52029)
- HS mechanical fixing to the CFSS with UV glue (NEA 123)
- Sector power dissipation ≈ 135 W
 - Working temperature $\approx 30^{\circ}$ C
 - Due to the low mass of the SPD a cooling failure causes a temperature rise of ≈1°C/s
- Material budget contribution due to the mechanical support and piping in the central region is ≈ 0.19 % of X0

Carbon Fiber Support Sector (CFSS)

2 half-staves are coupled to form the stave and are placed on the CFSS. The active region is in the middle and the services at the two ends

> Each sector is equipped with 6 staves

Sector set up

The first sector fully equipped

R. Santoro

Forum on tracking detector mechanics, CERN 3-4 July 2012

Cooling thermal qualification

Half-barrel integration

Half barrel layer 2

CF Thermal Shield

Barrel integration test

SPD installation in ALICE

Removal of the beam-pipe IBS (Installation and Bake-out Shell)

Half-barrel layer 1

Be Beam-pipe

SPD installation in ALICE

SPD Internal mean radius ≈ 39 mm Beam pipe outer radius = 29.8 mm

Layer 1

Layer 2

Ig detector mechanics, CERN 3-4 July 2012

Material budget summary table

SPD Component	Some details	Thickness (μm)	X/X0 (%)	Contribution to the total X/X0 (%)
Silicon	Sensor + FEE + interconnection	350	0.38	33
Electrical bus	5 Al/polyimide layers + SMD components	280 0.48		42
Mechanical support and cooling	Carbon fiber + tube	200	0.19	17
Others	Glue (assembly / thermal contact) and grounding foil		0.09	8
Total			1.14	100

Towards the upgraded pixel layers

Back to the previous considerations

- The key requirements to obtain good tracking performance are:
 - Small channel dimension
 - Low material budget
 - First layer as close as possible to the interaction point
- The silicon pixel detector in ALICE
 - Channel dimension: 50 μ m (r ϕ) x 425 μ m (z)
 - Material budget: 1.14 % of X0
 - Mean sensor position of the first layer = 39 mm
 - Beam pipe outer radius = 29.8 nm
- Target for the first layers of the upgraded ITS
 - Channels dimension: 20 μm x 20 μm (monolithic option)
 - Material budget: 0.3% of X0 (See C. Gargiulo's talk)
 - First tracking point: 22 mm
 - This will be possible by reducing the beam-pipe outer radius to 19.8 mm

Back to the previous considerations

Thanks for your attention

[current ALICE	ALICE upgrade	ATLAS upgrade	CMS upgrade
	innermost point (mm)	39.0	22.0	25.7	30.0
	x/X_0 (innermost layer)	1.14%	0.3%	1.54%	1.25%
 	d_0 res. $r\phi$ (μ m) at 1 GeV/ c	60	20	65	60
R. Sant	hadron ID p range (GeV/ c)	0.1-3	0.1-3	_	-

ITS installation: summer 2007 (phase 2)

