

Cooling experience with the LHCb VELO and spin-offs

Forum on Tracking Detector Mechanics

Bart Verlaat

(Nikhef/CERN)

CERN, 4 July 2012

Acknowledgements to Eddy Jans, Martin Van Beuzekom and Marco Kraan for the provided information

Introduction to the LHCb Velo

- Velo task: Locate secondary vertices of B-mesons
 - Silicon detector close to beam (8mm)
 - Located inside a vacuum volume separated from LHC vacuum by a 0.3mm aluminum foil (detector has too much out gassing)
- Complex detector from a mechanical point of view
 - 2 vacuums (<10mbar dP) separated by a thin foil RF-box
 - Motion system to move detector ~30mm away from the beam during injection
 - CO2 cooling system inside the vacuum
 - Thin wall vacuum vessel for minimum particle distortion

LHCb Detector

Velo overview

- Double-sided symmetric build to balance stresses due to "bi-metallic" effects.
- N-on-n sensors (300um).
- Thermal pyrolitic graphite (400um)
- Analogue read-out asic's: 2 x 16 Beetle chips (~18 Watt)
- Cooling: 2-phase CO₂ [silicon tip @ -7° C]
- 3 layer kapton cable for signals and power.

Velo configuration Detector halves

Detector halves can be installed without opening the LHC vacuum. (Back-out without detector)

Modules mounted on a solid aluminum base (not in acceptance) including the vacuum feed through hood.

Vacuum vessel with RF-boxes and motion system

Velo configuration *Motion system*

Velo configuration Motion system

Velo Motion system

- Moves the detector halves away by 30mm each to make place for beam injection
- Reproducibility <10µm
- Up and down movement by frame lifting
- Able to centre around the displaced beam (±5mm). Positioned with tracks
- Motion system components
 - Stepper motor
 - Gear belt
 - Linear spindles
 - All motion hardware outside vacuum
- Vacuum bellows to allow motion

The Detector Vacuum box

("RF Box")

- 0.3mm thick plastic deformed aluminum
- Corrugated foil to make sensors of 2 halves overlapping (ca. 5mm)
- Distance foil-sensor: 1mm
- Foil serves 2 purposes:
 - RF-shielding
 - Beam / detector vacuum boundary
 - Torlon coating inside (HV-isolation, thermal emissivity)
 - NEG coating outside (Vacuum pumping)

The Detector Vacuum box

("RF Box")

View from inside detector in open position

Detector side of the foil with silicon pockets

12

- 2 vacuum systems separated by the RF-Box.
 - Detector vacuum 10⁻⁵ mbar (Detector outgases)
 - Beam vacuum 10⁻⁹ mbar
 - Only 10mbar pressure difference allowed
 - Remember: silicon distance 1mm!
 - Complex pumping of 2 systems simultaneously via restrictions (-5mbar<dP<+2mbar)
 - When absolute pressure lower than 2 mbar achieved, then full pumping on both volumes.
- Vented with ultra pure neon during venting
- Able to install detector halves when beam vacuum is vented with neon.
 - Complex balancing of neon pressure in beam vacuum versus atmospheric pressure in detector volume (<2 mbar!)

PV306

TP211

previous

Vacuum scheme

dP pressure switching by membrane switches (-5 to +2 mbar)

Velo Thermal Control System (VTCS)

- The VTCS is a CO₂ based thermal control system (It cools and it heats)
- VTCS is inside the detector vacuum system
 - Extreme leak tightness requirements
 - Heat removal by conductance only
 - Inaccessible

Flexible to follow the 30mm detector movement

Maintain silicon and hybrid at cold temperatures (<-5°C)

CO₂ cooling(-30°C)

Thermal isolating paddle

Maintain base at room temperature for correct module position (Heater controlled)

VTCS evaporator

- 23 parallel cooling channels (1mmID x 1115mm (457mm heated))
- 0.5mmID x 2038mm inlet capillaries accessible from outside.
- 1 return manifold
- Inlet capillaries + 3/8" metal bellow hose as flexible assembly for detector movement
 - Inside a separated vacuum bellow for extra safety
- Manifold is main assembly supporting:
 - 23 paralell evaporators
 - Oversized capillary lengths
 - Temperature sensor cables
 - Interface to module base

VTCS Evaporator

VTCS Locations

VTCS Commissioning results:

Start-up and operation

80

70

60

800

700

600

Start—up of the VTCS during October 2009 commissioning:

8:40 - Start-up with set-point -5°C

11:10 - Detector switched on

12:50 – Set point to -15°C

15:30 - Set point to -25°C

17:10 - Set point to -30°C

18:20 - Set point to -35°C (System Limit)

Transfer lines

(Ca. 50m)

19:10 - Set point to -34°C

19:30 - Set point to -25°C

(10)

gas <

2-phase

R507a

chiller

gas

2-phase

20:00 - Detector Switched off

Accumulator

Cooling plant area

Pump

(8)

VTCS Commissioning results:

Start-up and operation in the PH-diagram

CERN

Accumulator

VTCS Commissioning results:

Steady State Performance

Boiling start-up problems

Some evaporators have problems getting boiling started. This phenomena seemed to get worse in time.

- Cleaner CO₂ (No nucleation triggers)
 Disappears after a while, no mayor problem, sometimes annoying
 Layout of evaporator with multiple passes is believed to be a bad concept.
 - Boiling section suppresses boiling in other section due to the increased heat transfer. (The winner takes it al, the heat.)

Evaporator construction

- The evaporator design is a complex assembly
 - Tight space requirements
 - Flexible in and outlet
 - Reliable connection methods
 - No connectors in vacuum!
 - Orbital welding
 - Nicrobraz EL-36 vacuum brazing
 - The absence of hydraulic connectors resulted in a dismountable thermal interface at the cooling to module interface.
 - Thermaflow T710, adhesive phase change material (45°C)
- Connection methods outside vacuum
 - Swagelok VCR connectors
 - Orbital welding
- Paper about the VTCS evaporator:
 - "Design, manufacture and test results of the VTCS CO₂ evaporator for the LHCb experiment at CERN", HEFAT2010, 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 19-21 July 2010, Antalya, Turkey

VTCS assembly Flexible in and outlet below

VTCS assembly Support manifold

VTCS assembly Evaporator block assembly

cooling block

Welding tube inside

Melting in a copper mold

P3 1

Melting in a SS mold with inert gas

The biggest fun we had: "Baking cookies"

- CERN
- Question was: Can we melt aluminum cooling blocks around a stainless steel pipe?
 - As Aluminum crimps more we must get a nice crimp contact though?

Prototype 4: Mg vapor bubbles due to vacuum

Applied vacuum method bonded SS to Alu by diffusion of Fe into Al

Result of vacuum baking:

A: Perfect contact around the pipe, B: perfect contra shape of the mold

- Aluminum cookie recipe:
 - Take a stainless steel tin and fill with aluminum blocks or bars (AlMg4,5Mn)
 - Melt aluminum under vacuum <1e-3 mbar at 700°C for 1.5 hour
 - Apply 1 bar Argon pressure for 10 minutes
 - Switch of oven and let cool down.
 - Remove cookies from the mold and machine

"The cookie bakery"

A bare cake

Magic pen to stop "super fluid aluminum"

A delicious aluminum cake!

VTCS assembly Detector half assembly

Insertion of evaporator into module base

Insertion of evaporator and base into hood

VTCS assembly Detector half finished

Spin-off

- The 1st spin-off of CO₂ cooling is the application in AMS-02. All the other spin-offs we know
 - Atlas, CMS, Belle, etc......
- But the LHCb Velo system is by itself also a spin-off of the AMS system
- So, in fact the LHCb is a spin-off of it's own spin-off.....

Some history: LHCb-Velo

- In 1999 Herman Boer Rookhuizen @ Nikhef proposed CO2 cooling for the Velo.
- A demonstration was given 1st with a fire extinguisher, later with a decent blow system set-up

Blow system set-up anno 1999

Power [W]	P ₁ [bar]	p ₂ [bar]	T ₁ [°C]	T ₂ [°C]	T ₃	T ₄	Mass flow [g/s]
20	15.2	16.4	-27.3	-25.7	-25.8	-28.1	0.07
40	15.9	16.9	-26.7	-25.7	-24.9	-26.2	0.13
100	14.7	16.1	-28.4	-28.0	-26.4	-29.2	0.33
200	14.8	16.1	-27.9	-27.4	-26.2	-29.0	0.66

First plant concept anno 2000

Some history:

Capillary Pumped Loop

2PACL System

1st proposed 2PACL concept for AMS (2000)

- In space a Capillary Pumped Loop (CPL) systems were used using a 2-phase accumulator for pressure control
- This option was explored for AMS but the wide spread heat sources required long thin tubing...aha...CO2!!!
- A mechanically pumped loop system was developed taking only the accumulator as heritage of the CPL
- The 2PACL system was born and later applied in both AMS and LHCb.

- CO₂ cooling is now operational in 2 HEP experiments:
 - LHCb-Velo (since 2009)
 - AMS-Tracker (on orbit since may 2011)
- Both cooling systems have the same technologies and the same lessons learned

Lessons learned

- Both AMS and LHCb were designed for extreme circumstances:
 - Vacuum environment
 - In accessible
- Extreme leak tightness requirements
 - Orbital welding of standard 316L tubing
 - Capillary tubing: Vacuum brazing (LHCb) / Laser welding (AMS)
 - Connectors: Swagelok VCR (LHCb) / Dynatube (AMS)
- Keep it simple approach:
 - Let the thermodynamics do the work!
 - No "too" fancy controls
 - Simple redundancy is the best redundancy
- All of above is not difficult to apply, one just have to do it.