A unitarity compatible integrand basis at two loops

Janusz Gluza

University of Silesia, Katowice
in collaboration with David Kosower and Krzysztof Kajda,

Phys.Rev. D83 (2011) 045012

LHCPhenoNet Mid-Term Meeting, 16-20 September, Ravello

Outline

(1) Introduction
(2) A unitarity compatible integrand basis at two loops
(3) Future and summary

Methods

Over the last decade or so modern methods of

- on-shell recursion relations (Britto, Cachazo, Feng, Witten,...)
and
- unitarity methods (Bern, Dixon, Kosower, ..., Ossola, Pittau, Papadopoulos, ..., Badger,.....)
overtaken to a large extent traditional Feynman diagrammatic approach, including one-loop calculations

Methods

- Knowledge of integrand basis is important e.g. in maximal unitarity approach

$$
\text { Amplitude }=\sum_{j \in \text { Basis }} \mathrm{c}_{j} * \text { Integral }_{j}+\text { Rational }
$$

see e.g. review by Ruth Britto, Loop Amplitudes in Gauge Theories:
Modern Analytic Approaches, arXiv:1012.4493

Methods

- Knowledge of integrand basis is important e.g. in maximal unitarity approach

$$
\text { Amplitude }=\sum_{j \in \text { Basis }} \mathrm{c}_{j} * \text { Integral }_{j}+\text { Rational }
$$

see e.g. review by Ruth Britto, Loop Amplitudes in Gauge Theories:
Modern Analytic Approaches, arXiv:1012.4493

$$
\begin{gathered}
I_{n} \propto \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}-m_{1}^{2}\right)\left(\left(\ell-K_{1}\right)^{2}-m_{2}^{2}\right)\left(\left(\ell-K_{1}-K_{2}\right)^{2}-m_{3}^{2}\right) \cdots\left(\left(\ell+K_{n}\right)^{2}-m_{n}^{2}\right)} \\
\Delta A^{1-\mathrm{loop}}=\sum_{j} \sum_{\mathbf{K}=\left\{K_{1}, \ldots, K_{j}\right\}} c_{j}(\mathbf{K}) \Delta I_{j}(\mathbf{K})
\end{gathered}
$$

One loop

Basis is known (independently of the given one-loop process), and include (scalar) integrals: boxes, triangles, bubbles and tadpoles

$$
\int d^{d} q \frac{1}{D_{1} D_{2} \ldots D_{n}}
$$

- Kallen, Toll (1965): triangles ($\mathrm{n}=3$) \rightarrow bubbles (in 2 dim)
- Melrose (later van Neerven and Vermaseren): pentagon ($\mathrm{n}=5$) \rightarrow boxes (in 4 dim),
- Lorentz invariance + Passarino and Veltman: tensor n -PF $\rightarrow \mathrm{m}$-PF scalar integrals ($m \leq n$)

Efficient methods for finding decompositions at one loop

- improved tensor decomposition (Denner, Dittmaier, Fleischer, Riemann, Yundin)

Automatic packages: FeynArts, LoopTools, PJFRY

Efficient methods for finding decompositions at one loop

- improved tensor decomposition (Denner, Dittmaier, Fleischer, Riemann, Yundin)

Automatic packages: FeynArts, LoopTools, PJFRY
Knowledge of (scalar) basis and their analytic structure allowed to focus and find coefficients of reductions:

- Complex integration and contour deformation (Weinzierl, Soper, Nagy,...)
- On-shell and generalised unitarity methods (OPP, Kosower, ..., Mastrolia,...), integrand reduction techniques (Ellis, Giele, Kunszt,Melnikov, Tramontano, Heinrich, Reiter)
Automatic packages: BlackHat, Golem/Samurai, GoSam, Helac-NLO,

Basis at two loops

Basis at two loops

- At two loops we have to work harder;

Basis at two loops

- At two loops we have to work harder;
- It was proved that basis is finite in general (for any topology, abstract proof by A.Smirnov and Petuchov), and proved many times in practice using IBP relations (Chetyrkin-Tkachov)

$$
0=\prod_{i=1}^{L}\left(\int \frac{d^{d} \ell_{i}}{(2 \pi)^{d}}\right) \frac{\partial}{\partial \ell_{j}} \cdot\left(\frac{v^{(j)}}{D_{1}\left(\ell_{1}, \ldots \ell_{L}\right) \cdots D_{m}\left(\ell_{1}, \ldots \ell_{L}\right)}\right)
$$

Basis at two loops

- At two loops we have to work harder;
- It was proved that basis is finite in general (for any topology, abstract proof by A.Smirnov and Petuchov), and proved many times in practice using IBP relations (Chetyrkin-Tkachov)

$$
0=\prod_{i=1}^{L}\left(\int \frac{d^{d} \ell_{i}}{(2 \pi)^{d}}\right) \frac{\partial}{\partial \ell_{j}} \cdot\left(\frac{v^{(j)}}{D_{1}\left(\ell_{1}, \ldots \ell_{L}\right) \cdots D_{m}\left(\ell_{1}, \ldots \ell_{L}\right)}\right)
$$

- Automation through a public software AIR, FIRE, Reduze, (plus IdSolver, etc)

The point is that there is plenty of possible choices for MIs. The choice of basis integrals makes a difference, e.g.

The point is that there is plenty of possible choices for MIs. The choice of basis integrals makes a difference, e.g.

- if we would like to solve MIs analytically (see V. Smirnov's textbooks on MB techniques);

The point is that there is plenty of possible choices for MIs. The choice of basis integrals makes a difference, e.g.

- if we would like to solve MIs analytically (see V. Smirnov's textbooks on MB techniques);
- it also matters in differential eqns. method A. Kotikov,E. Remiddi, T. Gehrmann, H. Czyż,... (introducing numerators or dots on specific lines will change IR and UV behaviour of integrals). Plus, a clever choice of integrals can decouple ϵ-expanded diff. eqns.

The point is that there is plenty of possible choices for MIs. The choice of basis integrals makes a difference, e.g.

- if we would like to solve MIs analytically (see V. Smirnov's textbooks on MB techniques);
- it also matters in differential eqns. method A. Kotikov,E. Remiddi, T. Gehrmann, H. Czyż,... (introducing numerators or dots on specific lines will change IR and UV behaviour of integrals). Plus, a clever choice of integrals can decouple ϵ-expanded diff. eqns.
(i) IBPs create doubled ("dotted") propagators
e.g.

$$
\frac{\partial}{\partial \ell_{\mu}} \frac{1}{(\ell-K)^{2}} \sim \frac{1}{\left[(\ell-K)^{2}\right]^{2}}
$$

Dotted propagators can result in

- Stronger logarithmic singularities,
- They can also create artificial $1 / \epsilon$ factors in front of MIs (which must be then determined to higher level in ϵ)

Dotted propagators can result in

- Stronger logarithmic singularities,
- They can also create artificial $1 / \epsilon$ factors in front of MIs (which must be then determined to higher level in ϵ)
So better if we avoid them, also in the unitarity approach.

Moreover, in the unitarity approach
(ii) Coefficients c_{j} are functions of the external spinors (depend on ϵ in addition)

$$
\text { Amplitude }=\sum_{j \in \text { Basis }} c_{j}(\epsilon, \ldots) * \text { Integral }_{j}+\text { Rational }
$$

What else?

What else?

(iii) At two loops number of master integrals for a given topology often depend on the number and arrangement of external massive legs, in general
Even more: dependence from relations among masses of external legs

Integral	\#MIs
$P_{*, 2}^{* *}$	$=2$
$P_{2,2}^{*,},\{1\}$	$=2$
$P_{2,2}^{*,},\{1,2\}$	$=3$
$P_{2,2}^{* *},\{1,3\}$	$=2$
$P_{2,2}^{* *},\{1,4\}$	$=2$
$P_{2,2}^{* *,},\{1,2,3\}$	$=3$
$P_{2,2}^{*,},\{1,2,3,4\}$	$=4$

We can do nothing about (ii) and (iii), but we can eliminate problem (i) in a systematic way [dotted propagators]

We can do nothing about (ii) and (iii), but we can eliminate problem (i) in a systematic way [dotted propagators]

Besides, we distinguished two kinds of bases:
(iv) bases to all orders in ϵ (d-dimensional basis)
(v) ignoring $\mathcal{O}(\epsilon)$ in amplitudes (regulated 4-dimensional basis)

We can do nothing about (ii) and (iii), but we can eliminate problem (i) in a systematic way [dotted propagators]

Besides, we distinguished two kinds of bases:
(iv) bases to all orders in ϵ (d-dimensional basis)
(v) ignoring $\mathcal{O}(\epsilon)$ in amplitudes (regulated 4-dimensional basis)

Our aim is to reduce any high-multiplicity two-loop integral (including numerators) to the above classes of basis integrals, which are free of higher powers of propagators.

Convention, planar topologies

Nonplanar cases would come with an external leg attached to the vertical, internal line.

Convention, planar topologies

Nonplanar cases would come with an external leg attached to the vertical, internal line.

$$
\begin{aligned}
& P_{n_{1}, n_{2}}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{1 \cdots n_{1}}\right)^{2}\left(\ell_{1}+\ell_{2}+K_{n_{1}+n_{2}+2}\right)^{2}} \\
& \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}+1}\right)^{2} \cdots\left(\ell_{1}-K_{\left(n_{1}+2\right) \cdots\left(n_{1}+n_{2}+1\right)}\right)^{2}}, \\
& P_{n_{1}, n_{2}}^{*}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{1 \cdots n_{1}}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}} \\
& 1
\end{aligned} \quad \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}+1}\right)^{2} \cdots\left(\ell_{1}-K_{\left.\left(n_{1}+2\right) \cdots\left(n_{1}+n_{2}+1\right)\right)^{2}}\right.}, ~ \begin{aligned}
& 1 \\
& P_{n_{1}, n_{2}}^{* *}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{\left.1 \cdots n_{1}\right)}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}} \\
& \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}}\right)^{2} \cdots\left(\ell_{1}-K_{\left.\left(n_{1}+1\right) \cdots\left(n_{1}+n_{2}\right)\right)^{2}}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& P_{n_{1}, n_{2}}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{1} \ldots n_{1}\right)^{2}\left(\ell_{1}+\ell_{2}+K_{n_{1}+n_{2}+2}\right)^{2}} \\
& \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}+1}\right)^{2} \cdots\left(\ell_{1}-K_{\left(n_{1}+2\right) \cdots\left(n_{1}+n_{2}+1\right)}\right)^{2}}, \\
& P_{n_{1}, n_{2}}^{*}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{1 \cdots n_{1}}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}} \\
& \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}+1}\right)^{2} \cdots\left(\ell_{1}-K_{\left(n_{1}+2\right) \cdots\left(n_{1}+n_{2}+1\right)}\right)^{2}}, \\
& P_{n_{1}, n_{2}}^{* *}=(-i)^{2} \int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{1}\right)^{2} \cdots\left(\ell_{1}-K_{1 \cdots n_{1}}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}} \\
& \times \frac{1}{\ell_{2}^{2}\left(\ell_{2}-K_{n_{1}+n_{2}}\right)^{2} \cdots\left(\ell_{1}-K_{\left(n_{1}+1\right) \cdots\left(n_{1}+n_{2}\right)}\right)^{2}}, \\
& P_{n_{1}, n_{2}}^{*}\left(K_{1}, \ldots, K_{n_{1}+n_{2}+1}\right)=P_{n_{1}, n_{2}}\left(K_{1}, \ldots, K_{n_{1}+n_{2}+1}, 0\right) \text {, } \\
& P_{n_{1}, n_{2}}^{* *}\left(K_{1}, \ldots, K_{n_{1}+n_{2}}\right)=P_{n_{1}, n_{2}}^{*}\left(K_{1}, \ldots, K_{n_{1}}, 0, K_{n_{1}+1}, \ldots, K_{n_{1}+n_{2}}\right) .
\end{aligned}
$$

At one loop

$$
G\binom{p_{1}, \cdots, p_{l}}{q_{1}, \cdots, q_{l}} \equiv \operatorname{det}_{i, j \in I \times I}\left(2 p_{i} \cdot q_{j}\right)
$$

We can expand each of the four-dimensional vectors v_{j} in a basis of four chosen external momenta $b_{1}, b_{2}, b_{3}, b_{4}$,

$$
\begin{aligned}
v_{j}^{\mu} & =\frac{1}{G\left(b_{1}, b_{2}, b_{3}, b_{4}\right)}\left[G\binom{v, b_{2}, b_{3}, b_{4}}{b_{1}, b_{2}, b_{3}, b_{4}} b_{1}^{\mu}+G\binom{b_{1}, v, b_{3}, b_{4}}{b_{1}, b_{2}, b_{3}, b_{4}} b_{2}^{\mu}\right. \\
& \left.+G\binom{b_{1}, b_{2}, v, b_{4}}{b_{1}, b_{2}, b_{3}, b_{4}} b_{3}^{\mu}+G\binom{b_{1}, b_{2}, b_{3}, v}{b_{1}, b_{2}, b_{3}, b_{4}} b_{4}^{\mu}\right] .
\end{aligned}
$$

We can express v_{j} by b_{i}, then $\ell \cdot b_{i}$ are all reducible, e.g.

$$
\ell \cdot b_{1}=\frac{1}{2}\left[(\ell-K)^{2}-\left(\ell-K-b_{1}\right)^{2}+\left(K+b_{1}\right)^{2}-K^{2}\right]
$$

I. Reduction of High-Multiplicity Integrals with Non-Trivial Numerators

At two loops, for $n_{1} \geq 4$, tensor integrals ($\ell \equiv \ell_{1}, \ell_{2}$)
$P_{n_{1}, n_{2}}\left[\ell \cdot v_{1} \ell \cdot v_{2} \cdots \ell \cdot v_{n}\right]$ can be similarly expanded with the external momenta b_{1}, \ldots, b_{4} chosen amongst the first n_{1} momenta. Then $\ell_{1} \cdot K_{j}, 1 \leq j \leq n_{1}$, are reducible

$$
\ell_{1} \cdot K_{j}=\frac{1}{2}[\underbrace{\left(\ell_{1}-K_{1 \ldots(j-1)}\right)^{2}-\left(\ell_{1}-K_{1} \ldots j\right)^{2}}_{\text {e.g. } P_{n_{1}-1, n_{2}}}+\underbrace{K_{1 \ldots j}^{2}-K_{1 \ldots(j-1)}^{2}}_{\text {simpler tensors }}]
$$

Similarly for ℓ_{2}. We end up with basis containing $P_{n_{1} \leq 4, n_{2}<n_{1}}^{\natural, *, * *}$ and (scalar, reducible or irreducible numerators) or general $\left(n_{1}, n_{2}\right)$ but with trivial numerators (without $\left.\ell_{i}\right)$

II. Reduction of High-Multiplicity Integrals with Trivial Numerators

Still trivial numerators but with arbitrary number of external legs, $n_{1} \geq 5$.
At one loop:

$$
I_{n}[\mathcal{P}(\ell)] \equiv-i \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{\mathcal{P}(\ell)}{\ell^{2}\left(\ell-K_{1}\right)^{2}\left(\ell-K_{12}\right)^{2} \cdots\left(\ell-K_{1 \cdots(n-1)}\right)^{2}},
$$

II. Reduction of High-Multiplicity Integrals with Trivial Numerators

Still trivial numerators but with arbitrary number of external legs, $n_{1} \geq 5$.
At one loop:
$I_{n}[\mathcal{P}(\ell)] \equiv-i \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{\mathcal{P}(\ell)}{\ell^{2}\left(\ell-K_{1}\right)^{2}\left(\ell-K_{12}\right)^{2} \cdots\left(\ell-K_{1 \cdots(n-1)}\right)^{2}}$,
$n \geq 6$. In general, (external momenta are 4 dimensional)

$$
G\binom{\ell, 1,2,3,4}{5,1,2,3,4}=0
$$

so

$$
I_{n}\left[G\binom{\ell, 1,2,3,4}{5,1,2,3,4}\right]=0, \quad(n \geq 6)
$$

$$
\begin{aligned}
G\binom{\ell, 1,2,3,4}{5,1,2,3,4}= & -\ell^{2} G\binom{1,2,3,4}{5,2,3,4}+\left(\ell-K_{1}\right)^{2} G\binom{1,2,3,4}{5, K_{12}, 3,4} \\
& -\left(\ell-K_{12}\right)^{2} G\binom{1,2,3,4}{5,1, K_{23}, 4}+\left(\ell-K_{123}\right)^{2} G\binom{1,2,3,4}{5,1,2, K_{34}} \\
& +\left(\ell-K_{1234}\right)^{2} G\binom{1,2,3,4}{1,2,3, K_{45}}-\left(\ell-K_{12345)^{2}} G\binom{1,2,3,4}{1,2,3,4}\right. \\
& -K_{1}^{2} G\binom{1,2,3,4}{5, K_{12}, 3,4}+K_{12}^{2} G\binom{1,2,3,4}{5,1, K_{23}, 4}-K_{123}^{2} G\binom{1,2,3,4}{5,1,2, K_{34}} \\
& -K_{1234}^{2} G\binom{1,2,3,4}{1,2,3, K_{45}}+K_{12345}^{2} G\binom{1,2,3,4}{1,2,3,4},
\end{aligned}
$$

$$
\begin{aligned}
I_{n}\left(K_{1}, \ldots,\right. & \left.K_{n}\right)=c_{1} I_{n-1}\left(K_{n 1}, K_{2}, \ldots, K_{n-1}\right)+c_{2} I_{n-1}\left(K_{12}, K_{3}, \ldots, K_{n}\right) \\
& +c_{3} I_{n-1}\left(K_{1}, K_{23}, K_{4}, \ldots, K_{n}\right)+c_{4} I_{n-1}\left(K_{1}, K_{2}, K_{34}, K_{5}, \ldots, K_{n}\right) \\
& +c_{5} I_{n-1}\left(K_{1}, \ldots, K_{45}, \ldots, K_{n}\right)+c_{6} I_{n-1}\left(K_{1}, \ldots, K_{56}, \ldots, K_{n}\right) \\
\text { e.g. } \quad c_{1}= & \frac{1}{c_{0}} G\binom{1,2,3,4}{5,2,3,4}, c_{2}=\ldots \\
c_{0}= & -K_{1}^{2} G\binom{1,2,3,4}{5, K_{12}, 3,4}+K_{12}^{2} G\binom{1,2,3,4}{5,1, K_{23}, 4}-K_{123}^{2} G\binom{1,2,3,4}{5,1,2, K_{34}} \\
& -K_{1234}^{2} G\binom{1,2,3,4}{1,2,3, K_{45}}+K_{12345}^{2} G\binom{1,2,3,4}{1,2,3,4},
\end{aligned}
$$

Similarly, at two loops:

$$
\begin{aligned}
& P_{n_{1}, n_{2}}\left(K_{1}, \ldots, K_{n_{1}+n_{2}+2}\right)= \\
& c_{1} P_{n_{1}-1, n_{2}}\left(K_{2}, \ldots, K_{\left(n_{1}+n_{2}+2\right) 1}\right)+c_{2} P_{n_{1}-1, n_{2}}\left(K_{12}, K_{3}, \ldots, K_{n_{1}+n_{2}+2}\right) \\
& +c_{3} P_{n_{1}-1, n_{2}}\left(K_{1}, K_{23}, K_{4}, \ldots, K_{n_{1}+n_{2}+2}\right)+c_{4} P_{n_{1}-1, n_{2}}\left(K_{1}, K_{2}, K_{34}, K_{5}, \ldots, K_{n_{1}+n_{2}+2}\right) \\
& +c_{5} P_{n_{1}-1, n_{2}}\left(K_{1}, \ldots, K_{45}, \ldots, K_{n_{1}+n_{2}+2}\right)+c_{6} P_{n_{1}-1, n_{2}}\left(K_{1}, \ldots, K_{56}, \ldots, K_{n_{1}+n_{2}+2}\right),
\end{aligned}
$$

We arrived at: $P_{n_{1}, n_{2}}$ with $n_{2} \leq n_{1} \leq 4$

III. Truly Irreducible Numerators and IBPs.

Avoiding dotted propagators.

For $P_{n_{1}<4, n_{2} \leq n_{1}}$, which can still include truly irreducible numerators, the IBP machinery has to be used.

As already discussed, we want to avoid simultanously appearance of doubled propagators in the basis.

$$
\begin{gathered}
\int \frac{d^{d} \ell_{1}}{(2 \pi)^{d}} \int \frac{d^{d} \ell_{2}}{(2 \pi)^{d}} \frac{\partial}{\partial \ell_{\mu}} \frac{v^{\mu}}{D\left(\ell_{1}, \ell_{2},\left\{K_{i}\right\}\right)} \\
\frac{\partial}{\partial \ell_{\mu}} \frac{1}{(\ell-K)^{2}}=2 \frac{(\ell-K)^{\mu}}{\left[(\ell-K)^{2}\right]^{2}}
\end{gathered}
$$

First idea: we can choose vectors whose dot product with the numerator resulting from differentiating any propagator vanishes

$$
v \cdot(\ell-K)=0
$$

However, it is a too strong constraint, it is sufficient to require that

$$
v \cdot(\ell-K) \propto(\ell-K)^{2}
$$

We impose this constraint for every propagator $\left(\sigma_{j}= \pm 1,0\right)$

$$
\left[\sigma_{j 1} v_{1}+\sigma_{j 2} v_{2}\right] \cdot\left(\sigma_{j 1} \ell_{1}+\sigma_{j 2} \ell_{2}-K_{j}\right)+u_{j}\left(\sigma_{j 1} \ell_{1}+\sigma_{j 2} \ell_{2}-K_{j}\right)^{2}=0
$$

$$
u_{j}=\operatorname{Polyn}\{\ell \cdot b\}
$$

IBP-generating vectors

$$
\begin{gathered}
{\left[\sigma_{j 1} v_{1}+\sigma_{j 2} v_{2}\right] \cdot\left(\sigma_{j 1} \ell_{1}+\sigma_{j 2} \ell_{2}-K_{j}\right)+u_{j}\left(\sigma_{j 1} \ell_{1}+\sigma_{j 2} \ell_{2}-K_{j}\right)^{2}=0} \\
v_{i}^{\mu}=c_{i}^{\left(\ell_{1}\right)} \ell_{1}^{\mu}+c_{i}^{\left(\ell_{2}\right)} \ell_{2}^{\mu}+\sum_{b \in B} c_{i}^{(b)} b^{\mu}
\end{gathered}
$$

Each of the coefficients $c_{i}^{(x)}$ is again a polynomial in the various independent Lorentz invariants
$V=\left\{\ell_{1}^{2}, \ell_{1} \cdot \ell_{2}, \ell_{2}^{2},\left\{\ell_{1} \cdot b\right\}_{b \in B},\left\{\ell_{2} \cdot b\right\}_{b \in B}, s_{12}\right\}$, e.g. for dim. 2
$c_{i}^{(p)}=c_{i, 1}^{(p)} s_{12}+\sum_{b \in B} c_{i, b 1}^{(p)} \ell_{1} \cdot b+\sum_{b \in B} c_{i, b 2}^{(p)} \ell_{2} \cdot b+c_{i, 2}^{(p)} \ell_{1}^{2}+c_{i, 3}^{(p)} \ell_{1} \cdot \ell_{2}+c_{i, 4}^{(p)} \ell_{2}^{2}$
where $c_{i, 1}^{(p)}$ depends on $\chi_{i j}=\frac{s_{i j}}{s_{12}}, \chi_{i \ldots j}=\frac{s_{i \ldots j}}{s_{12}}, \mu_{i}=\frac{m_{i}^{2}}{s_{12}}$,

We can assemble the set of equations into a single matrix equation

$$
\tilde{c} E=0
$$

where \tilde{c} (rows) gathers all coefficients $\left(c_{1}^{\ell_{1}}, \ldots, c_{1}^{b_{4}}, c_{2}^{\ell_{1}}, \ldots, c_{2}^{b_{4}}, u_{1}, \ldots, u_{n}\right)$ and E is $\left(2 n_{B}+4+n_{d}\right) \times n_{d}$ matrix, which depends on chosen topology [propagators]
For the planar double box

$$
v_{i}^{\mu}=c_{i}^{\left(\ell_{1}\right)} \ell_{1}^{\mu}+c_{i}^{\left(\ell_{2}\right)} \ell_{2}^{\mu}+c_{i}^{(1)} k_{1}^{\mu}+c_{i}^{(2)} k_{2}^{\mu}+c_{i}^{(4)} k_{4}^{\mu}
$$

where e.g.
$c^{\left(\ell_{1}\right)}(\{\underbrace{\left.\ell_{1}^{2}, \ell_{1} \cdot \ell_{2}, \ell_{2}^{2}, \ell_{1} \cdot k_{1}, \ell_{1} \cdot k_{2}, \ell_{1} \cdot k_{4}, \ell_{2} \cdot k_{1}, \ell_{2} \cdot k_{3}, \ell_{2} \cdot k_{4}, s_{12}\right\}}_{\text {symbols }})$
vector:

$$
\tilde{c}=\left(c_{1}^{\left(\ell_{1}\right)} c_{1}^{\left(\ell_{2}\right)} c_{1}^{(1)} c_{1}^{(2)} c_{1}^{(4)} c_{2}^{\left(\ell_{1}\right)} c_{2}^{\left(\ell_{2}\right)} c_{2}^{(1)} c_{2}^{(2)} c_{2}^{(4)} u_{1 \ldots 7}\right)
$$

Coefficients found (syzygies) using Gröbner basis (another algorithm by Robert Schabinger) In this way, e.g. for $P_{2,2}^{* *}$, the IBP generating vectors (of dim. 2) are:

$$
\begin{aligned}
v_{1 ; 1} & =-2\left(k_{4} \cdot \ell_{1}+\ell_{1}^{2}\right) k_{1}^{\mu}-\ell_{1}^{2} k_{2}^{\mu}+\left(2 k_{1} \cdot \ell_{1}-\ell_{1}^{2}\right) k_{4}^{\mu} \\
& +\left(4 k_{1} \cdot \ell_{1}+2 k_{2} \cdot \ell_{1}+2 k_{4} \cdot \ell_{1}-s_{12}\right) \ell_{1}^{\mu} \\
v_{1 ; 2} & =2\left(\ell_{2}^{2}-k_{4} \cdot \ell_{2}\right) k_{1}^{\mu}+\ell_{2}^{2} k_{2}^{\mu}+\left(2 k_{1} \cdot \ell_{2}+\ell_{2}^{2}\right) k_{4}^{\mu} \\
& +\left(2 k_{3} \cdot \ell_{2}-2 k_{1} \cdot \ell_{2}-s_{12}\right) \ell_{2}^{\mu}
\end{aligned}
$$

There are another two pairs of solutions of dim. 4.

$$
\begin{aligned}
& \frac{\partial}{\partial \ell_{1}^{\mu}}\left[\frac{v_{1 ; 1}}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}}\right] \\
= & \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}} \\
\times & \left(2 d k_{1} \cdot \ell_{1}-2 k_{3} \cdot \ell_{1}-s_{12}\right)-\left(8 k_{1} \cdot \ell_{1}-8 k_{3} \cdot \ell_{1}-4 s_{12}+s_{14}\right) \\
+ & \frac{4}{\left(\ell_{1}+\ell_{2}\right)^{2}}\left(2 k_{1} \cdot \ell_{2} k_{1} \cdot \ell_{1}-2 k_{1} \cdot \ell_{1} k_{4} \cdot \ell_{2}+k_{1} \cdot \ell_{2} \ell_{1}^{2}\right. \\
- & \left.\left.k_{3} \cdot \ell_{2} \ell_{1}^{2}+2 k_{1} \cdot \ell_{1} \ell_{2}^{2}+k_{2} \cdot \ell_{1} \ell_{2}^{2}+k_{4} \cdot \ell_{1} \ell_{2}^{2}+\left(\ell_{1}^{2}-\ell_{2}^{2}\right) s_{12} / 2\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \ell_{1}^{\mu}}\left[\frac{v_{1 ; 1}}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}}\right] \\
= & \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}} \\
\times & \left(2 d k_{1} \cdot \ell_{1}-2 k_{3} \cdot \ell_{1}-s_{12}\right)-\left(8 k_{1} \cdot \ell_{1}-8 k_{3} \cdot \ell_{1}-4 s_{12}+s_{14}\right) \\
+ & \frac{4}{\left(\ell_{1}+\ell_{2}\right)^{2}}\left(2 k_{1} \cdot \ell_{2} k_{1} \cdot \ell_{1}-2 k_{1} \cdot \ell_{1} k_{4} \cdot \ell_{2}+k_{1} \cdot \ell_{2} \ell_{1}^{2}\right. \\
- & \left.\left.k_{3} \cdot \ell_{2} \ell_{1}^{2}+2 k_{1} \cdot \ell_{1} \ell_{2}^{2}+k_{2} \cdot \ell_{1} \ell_{2}^{2}+k_{4} \cdot \ell_{1} \ell_{2}^{2}+\left(\ell_{1}^{2}-\ell_{2}^{2}\right) s_{12} / 2\right)\right) \\
& \frac{\partial}{\partial \ell_{2}^{\mu}}\left[\frac{v_{1 ; 2}}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}}\right] \\
= & \frac{1}{\ell_{1}^{2}\left(\ell_{1}-K_{12}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{1}-k_{1}\right)^{2}\left(\ell_{2}-K_{34}\right)^{2}} \\
\times & \left(2 d k_{1} \cdot \ell_{2}-2 k_{3} \cdot \ell_{2}+s_{12}\right)-\left(8 k_{1} \cdot \ell_{2}-8 k_{3} \cdot \ell_{2}+4 s_{12}+s_{14}\right) \\
- & \frac{4}{\left(\ell_{1}+\ell_{2}\right)^{2}}\left(2 k_{1} \cdot \ell_{2} k_{3} \cdot \ell_{2}-2 k_{1} \cdot \ell_{1} k_{4} \cdot \ell_{2}+k_{1} \cdot \ell_{2} \ell_{1}^{2}\right. \\
- & \left.\left.k_{3} \cdot \ell_{2} \ell_{1}^{2}+2 k_{1} \cdot \ell_{1} \ell_{2}^{2}+k_{2} \cdot \ell_{1} \ell_{2}^{2}+k_{4} \cdot \ell_{1} \ell_{2}^{2}+\left(\ell_{1}^{2}-\ell_{2}^{2}\right) s_{12} / 2\right)\right)
\end{aligned}
$$

Final operations

- Find and apply IBP-generating vectors to each of the integrals in the basis list

Final operations

- Find and apply IBP-generating vectors to each of the integrals in the basis list
- Vectors will depend on number and pattern of external masses

Final operations

- Find and apply IBP-generating vectors to each of the integrals in the basis list
- Vectors will depend on number and pattern of external masses
- Number of truly-irreducible integrals ("master integrals") also depends on number and pattern of external masses

Some solutions (in dimensions)

- Massless, one-mass, diagonal two-mass, long-side two-mass double boxes (here five IBP-generating vectors of dim. 4): two integrals

Some solutions (in dimensions)

- Short-side two-mass (four IBP-generating vectors, of dim. 4), three-mass double boxes: 3 IBP-gen. vectors of dim 4, 2 of dim 6,fixed numerically): three integrals

$$
P^{* *}[1], \quad P_{2,2}^{* *}\left[k_{1} \cdot \ell_{2}\right], \quad P_{2,2}^{* *}\left[k_{4} \cdot \ell_{2}\right]
$$

Some solutions (in dimensions)

- Four-mass double box: four integrals: e.g.
$P_{2,2}^{* *}[1], P_{2,2}^{* *}\left[k_{1} \cdot \ell_{2}\right], P_{2,2}^{* *}\left[k_{4} \cdot \ell_{1}\right], P_{2,2}^{* *}\left[k_{1} \cdot \ell_{2} k_{4} \cdot \ell_{1}\right]$
- massless pentabox (six IBP-gen. vectors of dim. 4, three of dim. 6, fixed numerically): three integrals

$$
P_{3,2}^{* *}[1], \quad P_{3,2}^{* *}\left[k_{1} \cdot l_{2}\right], \quad P_{3,2}^{* *}\left[k_{5} \cdot \ell_{1}\right]
$$

d-dimensional and 4-dim basis, exploring Gram

 determinants. I. PentagonsAt one loop, in d dimensions, they are independent basis elements.
Expanding in $d=4-2 \epsilon$, only the $\mathcal{O}(\epsilon)$ terms are independent, so that the integral can be eliminated from the basis.

$$
G\binom{\ell_{1}, 1,2,3,4}{\ell_{1}, 1,2,3,4}=\mathcal{O}(\epsilon)
$$

then also

$$
I_{5}[G(\ell, 1,2,3,4)]=\mathcal{O}(\epsilon)
$$

[Integral itself is UV finite by power counting and vanishes in all regions that give rise to soft and collinear singularities, where also Gram determinant vanishes]

$$
\begin{aligned}
& G\binom{\ell_{1}, 1,2,3,4}{\ell_{1}, 1,2,3,4}= \\
& \underbrace{d_{0}}_{\text {pentagon }}+\underbrace{d_{1} \ell^{2}+d_{2}\left(\ell-K_{1}\right)^{2}+d_{3}\left(\ell-K_{12}\right)^{2}+d_{4}\left(\ell-K_{123}\right)^{2}+d_{5}\left(\ell-K_{1234}\right)^{2}}_{\text {boxes }} \\
& -\ell^{2} G\binom{1,2,3,4}{\ell, 2,3,4}+\left(\ell-K_{1}\right)^{2} G\binom{1,2,3,4}{\ell, K_{12}, 3,4}-\left(\ell-K_{12}\right)^{2} G\binom{1,2,3,4}{\ell, 1, K_{23}, 4} \\
& +\left(\ell-K_{123}\right)^{2} G\binom{1,2,3,4}{\ell, 1,2, K_{34}}-\left(\ell-K_{1234}\right)^{2} G\binom{1,2,3,4}{\ell, 1,2,3}
\end{aligned}
$$

rest (two last rows) is proportional to odd powers of ℓ and vanishes in d-dimensions Insert this into the numerator of a five-point integral to obtain a relation relating it to five box integrals, up to terms of $\mathcal{O}(\epsilon)$

Vanishing Gram determinants at two loops, example

For $P_{2,2}^{* *}$ integrals we haven't found any useful, additional relations.
Pentabox: $3 \rightarrow 1$ MIs.
Two additional relations from considering the following two integrals:

$$
P_{3,2}^{* *}\left[G\binom{\ell_{1}, 1,2,3,5}{\ell_{2}, 1,2,3,5}\right] \text { and } P_{3,2}^{* *}\left[k_{5} \cdot \ell_{1} G\binom{\ell_{1}, 1,2,3,5}{\ell_{2}, 1,2,3,5}\right]
$$

Vanishing Gram determinants at two loops, example

For $P_{2,2}^{* *}$ integrals we haven't found any useful, additional relations.
Pentabox: $3 \rightarrow 1$ MIs.
Two additional relations from considering the following two integrals:

$$
P_{3,2}^{* *}\left[G\binom{\ell_{1}, 1,2,3,5}{\ell_{2}, 1,2,3,5}\right] \text { and } P_{3,2}^{* *}\left[k_{5} \cdot \ell_{1} G\binom{\ell_{1}, 1,2,3,5}{\ell_{2}, 1,2,3,5}\right]
$$

These kind of Gram determinants all vanish when either loop momentum approaches a potential (on-shell) collinear or soft configuration, thereby removing the corresponding divergences from the integral, and rendering it finite. In addition, the Gram determinants vanish when both loop momenta are four-dimensional, so that the integrals are of $\mathcal{O}(\epsilon)$.

Procedure

We first solve all d-dimensional IBP equations, and use the solutions of those equations (in analytical or numerical form) to reduce the integrals obtained from inserting Gram determinants into the numerator; this will provide additional identities to $\mathcal{O}\left(\epsilon^{0}\right)$ between the independent master integrals.

- $\mathcal{O}(\epsilon)$ Gram dets give no new equations for double boxes $P_{2,2}^{* *}$

- $\mathcal{O}(\epsilon)$ Gram dets give no new equations for double boxes $P_{2,2}^{* *}$

- Reduce three integrals for the pentabox $P_{3,2}^{* *}$ to one

- $\mathcal{O}(\epsilon)$ Gram dets give no new equations for double boxes $P_{2,2}^{* *}$

- Reduce three integrals for the pentabox $P_{3,2}^{* *}$ to one

- Reduce all double pentagons $P_{3,3}^{* *}$ to simpler integrals

Application: maximal generalized unitarity approach ${ }^{1}$

Kosower, Larsen, PRD2012, Caron-Huot, Larsen, JHEP2012, Johansson, Kosower, Larsen, 1208.1754

Basis is needed to ensure unique solutions to the coefficients of the MIs.
${ }^{1}$ different approaches based on OPP generalization by Ossola, Mastrolia and another method based on Gram determinants by S. Badger et al, see also next talk by I. Malamos

Where to go?

- Two loops amplitudes reduction methods are an active area of research, represented by several groups

Where to go?

- Two loops amplitudes reduction methods are an active area of research, represented by several groups
- There are many places for improvements and new ideas

Where to go?

- Two loops amplitudes reduction methods are an active area of research, represented by several groups
- There are many places for improvements and new ideas
- One example: chiral integrals in any gauge theory (to build a basis with as many IR finite MIs as possible)

$$
A^{(2)}=\sum_{i} c_{i}(\epsilon) \operatorname{lnt}_{i}+\text { Rational }
$$

Chiral double boxes as basis at two loops (Caron-Huot, Larsen, 1205.0801)

Summary

- Knowledge of an integral basis plays an important role in modern unitarity calculations ${ }^{2}$

[^0]
Summary

- Knowledge of an integral basis plays an important role in modern unitarity calculations ${ }^{2}$
- Two kinds of bases

[^1]
Summary

- Knowledge of an integral basis plays an important role in modern unitarity calculations ${ }^{2}$
- Two kinds of bases
- To be done: non-planar topologies; massive propagators

[^2]
Summary

- Knowledge of an integral basis plays an important role in modern unitarity calculations ${ }^{2}$
- Two kinds of bases
- To be done: non-planar topologies; massive propagators
- To be done: maximally generalized unitarity cuts with (ϵ) (and higher terms), master contours: 1208.1754

[^3]
Summary

- Knowledge of an integral basis plays an important role in modern unitarity calculations ${ }^{2}$
- Two kinds of bases
- To be done: non-planar topologies; massive propagators
- To be done: maximally generalized unitarity cuts with (ϵ) (and higher terms), master contours: 1208.1754
- Beyond two loops? (Zhang, Badger)

[^4]
Backup slides

Kosower, Larsen, PRD2012,
Caron-Huot, Larsen, JHEP2012, Johansson, Kosower, Larsen, 1208.1754

$$
\begin{gathered}
\mathbb{R}^{1,3} \rightarrow \mathbb{C}^{4} \\
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \mathrm{~N}_{F} \delta\left(\ell^{2}\right) \delta\left(\left(\ell-k_{1}\right)^{2}\right) \delta\left(\left(\ell-k_{1}-k_{2}\right)^{2}\right) \delta\left(\left(\ell+k_{4}\right)^{2}\right) \equiv \\
\oint_{T_{Q}} \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\mathrm{~N}_{F}(\ell, \cdots)}{\ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{1}-k_{2}\right)^{2}\left(\ell+k_{4}\right)^{2}},
\end{gathered}
$$

T_{Q} : four-torus encircling the solutions to the on-shell eqns.

E.g. at two loops

$$
\begin{aligned}
& \int \frac{d^{4} \ell_{1}}{(2 \pi)^{4}} \frac{d^{4} \ell_{2}}{(2 \pi)^{4}} \delta\left(\ell_{1}^{2}\right) \delta\left(\left(\ell_{1}-k_{1}\right)^{2}\right) \delta\left(\left(\ell_{1}-K_{12}\right)^{2}\right) \delta\left(\left(\ell_{1}+\ell_{2}\right)^{2}\right) \\
& \left.\quad \times \delta\left(\ell_{2}^{2}\right) \delta\left(\ell_{2}-k_{4}\right)^{2}\right) \delta\left(\left(\ell_{2}-K_{34}\right)^{2}\right),
\end{aligned}
$$

On-shell constraints:

$$
\begin{aligned}
& \ell_{1}^{2}=0\left(\ell_{1}-k_{1}\right)^{2}=0,\left(\ell_{1}-K_{12}\right)^{2}=0 \ell_{2}^{2}=0,\left(\ell_{2}-k_{4}\right)^{2}=0, \\
& \left(\ell_{2}-K_{34}\right)^{2}=0,\left(\ell_{1}+\ell_{2}\right)^{2}=0 .
\end{aligned}
$$

- On-shell constraints allow by choosing the integration contours to encircle poles unique to each MI in the basis decomposition, their coeff. can be extracted, so amplitude can be determined
- On-shell constraints allow by choosing the integration contours to encircle poles unique to each MI in the basis decomposition, their coeff. can be extracted, so amplitude can be determined
- Comparing \# constraints (cuts) with dimensionality of the integral: 1 degree of freedom remains (not so at 1-loop), there is a Jacobian arising from solving the δ-functions which helps to identify poles at specific locations
- On-shell constraints allow by choosing the integration contours to encircle poles unique to each Ml in the basis decomposition, their coeff. can be extracted, so amplitude can be determined
- Comparing \# constraints (cuts) with dimensionality of the integral: 1 degree of freedom remains (not so at 1-loop), there is a Jacobian arising from solving the δ-functions which helps to identify poles at specific locations
- Applied in the recent paper 1208.1754: uniqueness of contours on Riemann spheres

[^0]: ${ }^{2}$ However, sometimes knowledge of basis is not necessary, see e.g. approach with single cuts and modified propagators using Feynman's tree theorem by Bierenbaum, Catani, Draggiotis, Rodrigo

[^1]: ${ }^{2}$ However, sometimes knowledge of basis is not necessary, see e.g. approach with single cuts and modified propagators using Feynman's tree theorem by Bierenbaum, Catani, Draggiotis, Rodrigo

[^2]: ${ }^{2}$ However, sometimes knowledge of basis is not necessary, see e.g. approach with single cuts and modified propagators using Feynman's tree theorem by Bierenbaum, Catani, Draggiotis, Rodrigo

[^3]: ${ }^{2}$ However, sometimes knowledge of basis is not necessary, see e.g. approach with single cuts and modified propagators using Feynman's tree theorem by Bierenbaum, Catani, Draggiotis, Rodrigo

[^4]: ${ }^{2}$ However, sometimes knowledge of basis is not necessary, see e.g. approach with single cuts and modified propagators using Feynman's tree theorem by Bierenbaum, Catani, Draggiotis, Rodrigo

