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High Precision QFT Calculations
QCD

Consider perturbative QFT. Such as corrections to the high energy
proton sub-structure from heavy quarks at 3-loops (and for
p2 >> m2

HQ). Bierenbaum, Blümlein, Klein ’09

Such diagrams yield nasty integrals which are extremely hard to work
with. A simpler form is needed. Our goal is to simplify the object.

Physically speaking, the only restriction on the Feynman diagrams is
that they contain atmost one mass.
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High Precision QFT Calculations
First Algorithmic Steps

Momentum integrals are straightforward but the Feynman parameters
integrals are not. Notice the operator insertion (the ⊗ in the
diagram) will give us a Mellin parameter, n. Diagrams obey
homogeneous difference equations in n.Blümlein, Kauers, Klein, Schneider ’09

A first step in trying to understand the remaining integrals is to
convert them into definite nested hypergeometric and harmonic
multi-sums. Blümlein & Kurth ’98 and Vermaseren ’98

There is an algorithm to do this! Blümlein, Klein, Schneider & Stan ’12
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Statement of Problem

Any given Feynman diagram (with atmost one mass) can be expressed as
a definite nested multi-sum,

Fn(ε) =

L1(n)∑

i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑

j1=β1

· · ·
∞∑

jN=βN

f (ε, n, i1, . . . , im, j1, . . . , jn).

Aim

Given a definite nested multi-sum find, in terms of indefinite nested
multi-sums, another (simpler) representation accurate to a given order in ε.

The dimensional regularisation parameter is denoted by ε and n is a Mellin
parameter.
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Statement of Problem
Illustration (< 10 minutes of CPU time)

n+1∑

i=2

n+2−i∑

j=2

∞∑

a=0

∞∑

b=0

(n+2
i

)(n+2−i
j

)
(−1)i+jB[i , j ](j + i − 1)

(j + i + a + b)(i + j + a + b − 1)(j + b)(i + b)

=
2n3 + 5n2 + 4n − 2

n + 1
S2 +

[
5

2
S2 −

n2 + 2n + 2

n + 1

]
S2
1 − 2nS2,1

− 2n(n + 1)ζ3 − S3
1 +

1

4
S4
1 −

1

4
S2
2 + 2(n + 1)S3 −

1

2
S4 − 2S3,1

+ [4ζ3 + (2n − 1)S2 + 2S3 − 2(n + 1)− 4S2,1] S1 + 2S2,1,1

where Sa,...,b = Sa,...,b(n) & B[x , y ] = Γ[x ]Γ[y ]/Γ[x + y ] for convenience
and ε = 0 for this sum.

We have gone from a tough to simple, if long, expression.

(RISC) Multi-Sum Algorithms September 2012 6 / 32



Experimental Nature of the Subject

Consider integration,

∫ 1

0
x(1− x)dx

∫ 1

0
xα(1− x)dx

∫ 1

0
xα(1− x)βdx

The first two integrals are trivial to perform, the third can not be
expressed in terms of elementary functions.

Problems become much tougher as the number of free parameters
increases and difficulty is not clear by inspection.

By inspecting the integral’s form one can not see if the structure fits
one algorithm or another.

At first glance, it is not obvious how a given algorithm will perform on
integrals (or sums).
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Experimental Nature of the Subject

Feynman parameter integrals have proved to be very tough; sum
representations of such integrals are correspondingly tough.

Choosing the optimal algorithm, that contains the correct
mathematical ideas, is very important.

One would like a toolkit of summation algorithms that capture the
different types of mathematical structure that can arise in Feynman
diagrams.
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Existing Tools
Sigma

To solve summation problems one needs a general toolkit to apply. Of
the examples available, we will use a collection of algorithms
implemented in Mathematica. Schneider ’04, ’05... related to Karr ’81 & Chyzak ’00

Sigma computes linear recurrences with polynomial co-efficients.

The scaling of CPU time with ‘input difficulty’ is dangerously high.

We must adopt algorithms that ‘divide and conquer’ summation
problems.

In addition, one must massage inputs to dial scaling parameters thus
making a computation possible.
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Existing Tools
Direct Approach

Fn(ε) =

L1(n)∑

i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑

j1=β1

· · ·
∞∑

jN=βN

f (ε, n, {i}, {j})

Apply MultiSum package (tough)

g0(ε, n)Fn + . . . + gr (ε, n)Fn+r = G (ε, n)

Developed and used for example by Wegschaider ’08, Blümlein, Klein, Schneider & Stan ’12
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Existing Tools
Sum by Sum Approach

Zoom to the innermost sum

F̂n(ε) =

∞ or LN∑

jN=βN

f (ε, n, {i}, {j})

Fn(ε) =

L1(n)∑

i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑

j1=β1

· · ·
∞∑

jN=βN

f (ε, n, {i}, {j})

Find a recurrence for the inner sum,
g0(ε, n)F̂n + . . . + gr (ε, n)F̂n+r = G (ε, n)

Solve Recurrence and
substitute in solution

(RISC) Multi-Sum Algorithms September 2012 11 / 32



Refined Holonomic Approach

Zoom to the innermost sum

F̂n(ε) =

∞ or LN∑

jN=βN

f (ε, n, {i}, {j})

Fn(ε) =

L1(n)∑

i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑

j1=β1

· · ·
∞∑

jN=βN

f (ε, n, {i}, {j})

Find a recurrence for the inner sum,
g0(ε, n)F̂n + . . . + gr (ε, n)F̂n+r = G (ε, n)

Represent innermost
sum with its recur-
rences and its initial
values
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A Worked Example

Consider the following definite nested multi-sum,

Fn =
n−2∑

i1=0

n−i1−2∑

i2=0

4i1!(−1)i2(n − i1 − 1)(1 + i2)!

(1 + i1 + i2)2(2 + i1 + i2)2(i1 + i2)!

(
n − i1 − 2

i2

)

To find a recurrence for Fn, first re-write the sum,

4
n−2∑

i1=0

i1!(n − i1 − 1)ai1,n

ai1,n =

n−i1−2∑

i2=0

(−1)i2(1 + i2)!

(1 + i1 + i2)2(2 + i1 + i2)2(i1 + i2)!

(
n − i1 − 2

i2

)

now apply a recurrence finding algorithm, e.g. Sigma.
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A Worked Example

One finds that,

(2+i1+n+i1n)ai1,n − (2+i1 − n)(1+i1 + n)ai1+1,n =
1

(1+i21 )i1!
,

−(1+i1 − n)(1+2i1+i1n)ai ,n − (1+n)(1+i1+i1n)ai ,n+1 = − 1

(1+n)i1!
.

The two recurrences plus initial conditions specify the summand — a
holonomic sequence.

The right-hand sides are non-zero, which is where the ‘refined’
enters!

Combining them one finds, for example, a zero-order recurrence,

Fn =
4n

2 + n
− 8S1(n)

(1 + n)(2 + n)
, S1(n) =

n∑

i=1

1

i
.
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Recurrence Tree

N

i1

i2

...
...

i2, i1

...
...

...

i1, N

i2

...
...

i2, i1

...
...

...

i2, N

...
...

...
...

Third Sum, bi2 =
∑i2

i3=0 ci3

Second Sum, ai1 =
∑i1

i2=0 bi2

Input Sum, F =
∑N

i1=0 ai1
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Conceptual Advantages

Consider a sum, in the refined approach, defined by a zeroth-order
recurrence. It has the most complicated rhs possible. Essentially that
is the sum-by-sum approach!

At the other extreme, the class of problem sums obey homogeneous
(rhs =0) recurrences of order . 35.

The refined approach allows the structure of the problem to be
distributed between the order of the recurrence and the complexity of
the recurrence right-hand side.

This freedom is a motivating concept to explore the refined approach.
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Conceptual Advantages

Using the sum-by-sum approach one must expand the summand in ε
as a first step. Such an expansion blows up the size of the summand
quickly.

By holding the epsilon expansion inside the recurrence one can
compute, with a small extra overhead, all the co-efficients in an
expansion at once.

One is motivated to propose that at higher and higher orders in ε the
refined approach will become increasingly quicker than the
sum-by-sum approach.
This scaling is a second motivating concept to explore the refined
approach.
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Conceptual Advantages
Example Sum

Consider the following double sum,

Fn(ε) =
n−5∑

j0=0

n−3−j0∑

j1=0

(−1)j1(1 + j1)(j0 + j1)!
(
1− ε

2

)
j0

(
3− ε

2

)
j1

(4− ε)j0+j1

(
4 + ε

2

)
j0+j1

(
n−j0−2
j1 + 1

)

This is the appropriate input for the refined approach. For the sum-by-sum
approach one must expand the summand.

Fn(ε) = F 0
n (ε) + εF 1

n (ε) + . . .
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Conceptual Advantages
Example Sum

F 0
n (ε) =

n−5∑

j0=0

n−3−j0∑

j1=0

(−1)j1(1 + j1)(j0 + j1)! (1)j0 (3)j1
(4)j0+j1

(4)j0+j1

(
n−j0−2
j1 + 1

)

F 1
n (ε) =

n−5∑

j0=0

n−3−j0∑

j1=0

3(−1)j1 j0!(2 + j1)!(1 + j1)(j0 + j1)!

((3 + j0 + j1)!)2

(
n−j0−2
j1 + 1

)

×
(

1 + 3S1(2 + j0) + 3S1(j1)− 3S1(3 + j0 + j1)

)
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Computing Recurrences
Effects of Recurrence Order

Passing Sigma sums that are defined in terms of high-order
recurrences generically decreases the speed drastically. For example, a
sum defined in terms of an order 8 recurrence is simply too high to
compute with.

In addition, it is often true that recurrence order grows. A sum defined
by a fourth order recurrence will probably obey a 4+ order recurrence.

In this way one can lose control of the tree of recurrences for a
multi-sum making the algorithm unworkable.
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Computing Recurrences
Handling Right-hand Sides

Passing Sigma a sum, defined in terms of recurrences accurate to some
order in ε, one obtains a recurrence to the requested order in ε.

g2(ε, j , n)aj+2 + . . .+ g0(ε, j , n)aj = 3j2 +

j∑

i=1

1

n + i + j
+ ε

j∑

i=1

S1(n)

j(j − 1 + i)

Generically the right-hand side of the recurrence, G (ε, n), will contain
definite nested multi-sums which must be converted to indefinite
objects using either algorithm.
(Unprocessed rhs are usually outside the algorithm’s input class.)

Processing the right-hand side can be trivial or tough.

In practice finding and simplifying a recurrence take similar amounts of
time due to optimisation.
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Computing Recurrences
Managing the Recurrence Tree

One is looking to balance several factors.

1 Time to compute recurrences.

2 Time to simplify recurrences.

3 Growth of computation time for later recurrences (controlling the
tree)
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Current Standard Lore

Here is our current generic thinking,

1 Try to compute a recurrence, with a simple right-hand side (⇒
high-order), provided the recurrence is no more than order 2 and that
the system of equations hidden in Sigma takes less than x minutes to
solve. (Näıve difference field theory)

2 Else, compute a recurrence of minimal order; no restrictions on
right-hand side. (Improved difference field theory)

3 Simplify right-hand side, expand in ε.
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Illustrative Result

It is not correct to think of one approach as quickest/best in general.
Take the example sum,

S =
n−2∑

i1=0

n−i1−2∑

i2=0

4i1!(−1)i2(n − i1 − 1)(1 + i2)!

(1 + i1 + i2)2(2 + i1 + i2)2(i1 + i2)!

(
n − i1 − 2

i2

)

The refined approach is 4 times faster than the current ‘state-of-the-art’
sum-by-sum algorithm and some examples can be as much as 10 times
faster.
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Comparison

Experimental tests show that large, complicated input sums e.g.
quintuple sums are quicker with the sum-by-sum approach. The tree
of recurrences can not be well controlled (yet!).

Small sums are quicker with the refined approach e.g. double or triple
sums. However the refined approach is far from an exhausted method
at the moment.
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Applications to Perturbative QCD

In the last few months the summations algorithm has been applied to
problems arising in QCD. Several diagrams that can not be found in the
literature have been attempted. The algorithm achieved full solutions to
several Feynman diagrams. That gave further areas of development and
refinement.
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QCD Sum Examples
Easy Double Sum

Fn(ε) =
n−5∑

j0=0

n−3−j0∑

j1=0

(−1)j1(1 + j1)(j0 + j1)!
(
1− ε

2

)
j0

(
3− ε

2

)
j1

(4− ε)j0+j1

(
4 + ε

2

)
j0+j1

(
n−j0−2
j1 + 1

)

Computed to leading order in ε takes 30 seconds with the refined approach
and 180 seconds with the sum-by-sum approach.
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QCD Sum Examples
Easy Double Sum

The innermost sum obeys a second order homogeneous recurrence

g2(ε, j0, n)aj0+2,n + g1(ε, j0, n)aj0+1,n + g0(ε, j0, n)aj0,n = 0

where

g0 = (n − j0 − 3)(j0 + 1)(2j0 + 2− ε)
g1 = (2nj0 − 2n + εn − 4j20 − j0ε− 16j0 − 18− ε+ ε2)(n − j0 − 2)

g2 = 2(n − j0 − 3)(j0 − n + 2)(j0 + 2 + ε)
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QCD Sum Examples
Easy Double Sum

The whole sum obeys a zeroth order recurrence.

g0(ε, n)Fn = G (ε, n)

where

g0(ε, n) = −(2 + ε)(4 + ε)(n + 2− ε)(n + 1− ε)
G (ε, n) = 36(4− n)(n + 1)

×(2 + n)(36 + n(n(205 + n(n(n(n − 11) + 52)− 134))− 179))

n2(n − 3)2(n − 2)2(n − 1)2

+ε

[
6n(n(n(n(n(−n(n(n(n(n(n(n(n(5n − 108) + 1004)− 5238) + 16628)

−31758) + 29602) + 13158)− 85481) + 145890)− 166526) + 128184)

+27648)28080)− 5184)− 72

n
(n + 3)S1(n)

]
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QCD Sum Examples
Tough Triple Sum

n−2∑

j=0

j−2∑

j1=0

n−j+j1−2∑

j2=1

(−1)j1+j2 j2(j + j1 − 2)!(j1 − ε+ 3)!(1 + j2)!

(j − j1 + j2)!(n − j + j1 + 2− 2ε)!

×
(n − j − ε− 2)!

(
n − j + j1 + 2− ε

2

)
!
(
n − j + j1 − j2 + 1− ε

2

)
!(

n − j + j1 + 4 + ε
2

)
!
(
n − j + j1 + 2 + ε

2

)
!

×
(
j − 2
j1

)(
n − j + j1 − 2

j2

)

In this case all the recurrences are first order. Computed from order ε−1 to
ε2 takes 3,500 seconds with the refined approach and 4,750 seconds with
the sum-by-sum approach.
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Current Project

At the moment the algorithm is being tested on just over 7,000 sums that
originate from a 3-loop QCD diagram that is not yet available in the
literature.
Currently half the sums have been solved and the remaining half are being
computed.
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Summary

1 A refined approach to multi-summation has the capability to
interpolate between existing multi-summation techniques.

2 With regards to ε expansions, there are good reasons to pursue the
refined approach.

3 Although in the earlier stages of development, the method can already
compete with (mature) exisiting technologies in non-trivial examples.

4 The algorithm is now being used to solve new diagrams that as yet
have not appeared in the literature.

(RISC) Multi-Sum Algorithms September 2012 32 / 32



Definition of Summand

Definition

Let {f (n, k)}n≥0,k≥0 be a multivariate (here bivariate) sequence over a
field F. f is hypergeometric in n and k if ∃d ∈ Z+ and
r1(x , y), r2(x , y) ∈ F(x , y) such that f (n + 1, k)/f (k) = r1(n, k) and
f (n, k + 1)/f (n, k) = r2(n, k) ∀n, k ≥ d .

Definition

Restrict to sequences where:
∃d ∈ Z+ , ai , bi ,mi ∈ Z and ci ∈ F for i ∈ [1, r ] where
ain + bik + ci /∈ Z−∀n, k ≥ d and ∃ p(x , y), q(x , y) ∈ F[x , y ] where q 6= 0
factors linearly over F :
f (n, k) = p(n, k)/q(n, k)

∏r
i=1 Γ(ain + bik + ci )

mi ∀n, k ≥ d .

n.b. Z± both include zero.
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Statement of Problem
Summary

Allow the summand to be as defined, times harmonic numbers and linear
combinations of such terms.

Fn(ε) =

L1(n)∑

i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑

j1=β1

· · ·
∞∑

jN=βN

f (ε, n, i1, . . . , im, j1, . . . , jN)

where n ∈ N and n ≥ n0 ∈ N, all the upper bounds, Lk , are integer-linear
in n, {i} and {j}. All the lower bounds are specified constants,
{α}, {β} ∈ N. The summand, F , is hypergeometric with respect to n, {i}
and {j}.

Aim

Find an expression for a definite nested multi-sum, using the outlined
summand, in terms of indefinite nested multi-sums.

Return
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	Appendix

