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               172.6±0.6stat±1.2syst (CMS)
               174.5±0.6stat±2.3syst (ATLAS)
                      (yt=1 ⇒ 173.9)
⇒ plays important role in Higgs physics and 
searches
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Top at the LHC

Present:
production cross section, mass, width, t-T mass 
difference, spin correlations, W helicity/
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anomalous couplings, FCNC, jet veto in tT

5



Top at the LHC

Present:
production cross section, mass, width, t-T mass 
difference, spin correlations, W helicity/
polarization, Vtb, charge, charge asymmetry, 
anomalous couplings, FCNC, jet veto in tT

Future: 
discovery tool, coupling measurements

These require precise predictions of 
distributions at hadron level for

pp →tT+hard X, X = H, A, W, Z,γ, j, bB, 2j...

(with decays, top is not detected)
5



How to improve accuracy beyond 
NLO?

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But
-residual scale dependence can be sizeable

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But
-residual scale dependence can be sizeable
-jet substructures, decays are modelled 
poorly

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But
-residual scale dependence can be sizeable
-jet substructures, decays are modelled 
poorly

•Two ways of improvement:

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But
-residual scale dependence can be sizeable
-jet substructures, decays are modelled 
poorly

•Two ways of improvement:
-go to NNLO (hard)

6



How to improve accuracy beyond 
NLO?

•NLO revolution provided predictions for     
2 → 2, 3, 4, 5(!) processes at NLO accuracy

•But
-residual scale dependence can be sizeable
-jet substructures, decays are modelled 
poorly

•Two ways of improvement:
-go to NNLO (hard)
-match to shower Monte Carlo (SMC) 
programs

We pursue both 
within Phenonet

this talk
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Why should we care about 
NLO + SMC?

•Hadrons in final state
•Closer to experiments, realistic analysis 
becomes feasible
•Decayed tops
•Parton shower can have significant effect 
(in Sudakov regions, at kinematic boundaries)
•For the user: 

event generation is, faster than an NLO 
computation

(once the code is ready!)
...but we deliver the events on request
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‣ Idea: exact calculation in the first two orders of pQCD 

‣ Subtraction method

NLO subtractions

dΦn+1 = dΦn dΦrad , dΦrad ∝ dt dz dφ
2π

dσNLO = [B(Φn) + V(Φn) +R(Φn+1)dΦrad] dΦn

= [B(Φn) + V (Φn) + (R(Φn+1)−A(Φn+1)) dΦrad] dΦn

B(Φn) =

�
dσLO , V (Φn) = V(Φn)+

�
dΦradA(Φn+1)

�
dΦnB(Φn) = σLO
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NLO subtractions

dΦn+1 = dΦn dΦrad , dΦrad ∝ dt dz dφ
2π

dσNLO = [B(Φn) + V(Φn) +R(Φn+1)dΦrad] dΦn

= [B(Φn) + V (Φn) + (R(Φn+1)−A(Φn+1)) dΦrad] dΦn

B(Φn) =

�
dσLO , V (Φn) = V(Φn)+

�
dΦradA(Φn+1)

�
dΦnB(Φn) = σLO

�
dΦn

�B(Φn) = σNLO
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Born process 
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Idea: use NLO calculation as hard process as input for the SMC

Bottleneck: how to avoid double counting of first radiation w.r.to 
Born process 

How to match NLO to PS?

Solutions:
- MCatNLO [Frixione, Webber hep-

ph/0204244]

- POWHEG [Nason hep-ph/
0409146, Frixione, Nason, Oleari 
arXiv:0709.2092]

Result: PS events giving distributions 
exact to NLO in pQCD

[Nason, Ridolfi hep-ph/0606275]
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Accuracy of the POWHEG cross section

dσLHE

dO
=

dσNLO

dO

+ O(αs)

�
dΦRR(ΦR)

�
δ(O(ΦR)−O)− δ(O(ΦB)−O)

�
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Accuracy of the POWHEG cross section

Used:

dσLHE

dO
=

dσNLO

dO

+ O(αs)

�
dΦRR(ΦR)

�
δ(O(ΦR)−O)− δ(O(ΦB)−O)

�

∆
�
ΦB , k⊥(ΦR)

� B̃(ΦB)

B(ΦB)
= 1 + O(αs)

Difference scales with the NLO K-factor
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Our choice: POWHEG-BOX with 
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HELAC-NLO for tT+hard X

•The POWHEG-BOX implements
•FKS subtraction scheme
•POWHEG method for matching

•HELAC-NLO is a collection of codes 
(HELAC-Phegas, HELAC-1loop, HELAC-
Dipoles) to compute LO and NLO partonic 
cross sections for 2 → 2, 3, 4, 5 processes

•It provides tree and 1loop ME for us
•Both are publicly available:

http://helac-phegas.web.cern.ch/helac-phegas/
http://powhegbox.mib.infn.it/

[Alioli, Nason, 
Oleari, Re
arXiv: 1002.2581]

[Bevilaqua et al, 
arXiv: 1110.1499]
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POWHEG-BOX framework

POWHEG-BOX

ΦB B Bµν
j

VRBij
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PowHel framework

POWHEG-BOX HELAC-NLO

PowHel
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PowHel framework

POWHEG-BOX HELAC-NLO

PowHel

RESULT of PowHel:

Les Houches file of Born and Born+1st radiation 
events (LHE) ready for processing with SMC followed 
by almost arbitrary experimental analysis
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HELAC-1LOOP@dd

Processes with more than 2 particles in final state
•Complicated tensor integrals in 1-loop amplitudes
•High rank ones with possible numerical 
instabilities
•If double precision is not enough (check)

➡ use double-double precision

HELAC-1LOOP@dd

15



HELAC-1LOOP@dd

HELAC-1LOOP CUTTOOLS

ΦB

V

N = N

HELAC-1LOOP@dd CUTTOOLS@mp

ΦB|dd

N �= N
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http://www.grid.kfki.hu/twiki/bin/view/
DbTheory/WebHome
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Processes in PowHel

by Garzelli, Kardos, Papadopoulos, ZT

✓tT and W+W-bB   [to appear]

✓tT+H/A                [arXiv: 1108.0387 and 1201.3084]

✓tT+Z                    [arXiv: 1111.0610 and 1208.2665]

✓tT+jet                  [arXiv: 1101.2672]

✓tT+W±                           [arXiv: 1208.2665]

•tT+X                      [in preparation]
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Checks of the NLO computation
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✓ Check (implementation of) real emission squared matrix 
elements in POWHEG-BOX to those from HELAC-PHEGAS/
MADGRAPH in randomly chosen phase space points

✓ Check (implementation of) virtual correction in POWHEG-
BOX to those from HELAC-1Loop/GOSAM/MADLOOP in 
randomly chosen phase space points 

✓ Check the ratio of soft and collinear limits to real emission 
matrix elements tends to 1 in randomly chosen 
kinematically degenerate phase space points
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✓ Check (implementation of) real emission squared matrix 
elements in POWHEG-BOX to those from HELAC-PHEGAS/
MADGRAPH in randomly chosen phase space points

✓ Check (implementation of) virtual correction in POWHEG-
BOX to those from HELAC-1Loop/GOSAM/MADLOOP in 
randomly chosen phase space points 

✓ Check the ratio of soft and collinear limits to real emission 
matrix elements tends to 1 in randomly chosen 
kinematically degenerate phase space points

Each PowHel computation is an independent one of other 
NLO predictions for the process 

(see e.g. arXiv: 1111.0610 for tT Z production)

Checks of the NLO computation
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tTV-production (V=Z,W±)
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pp→ tt+V checks

•NLO predictions for tTW+ and tTW- agree with 
those by J. Campbell and K. Ellis,                                       
JHEP 1207 (2012) 052 [arXiv:1204.5678]

•NLO predictions for ttZ a bit larger than those by A. 
Lazopoulos, T. McElmurry, K. Melnikov, F. Petriello, 
Phys. Lett. B666 (2008)  62 [arXiv:0804.2220]
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pp→ tt+V checks-
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pp→ tt+V checks-

•Comparison of LHEF to NLO made for the 7 TeV 
LHC
-fixed scale μ=mt + mW/2 and PDG parameters, 

CTEQ6M
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Accuracy of the POWHEG cross section

dσLHE

dO
=

dσNLO

dO

+ O(αs)

�
dΦRR(ΦR)

�
δ(O(ΦR)−O)− δ(O(ΦB)−O)

�

Useful for checking
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pp→ tt+Z: LHE vs NLO

Transverse momentum and rapidity distribution for the Z
at 7TeV LHC

agreement is within 1%, Remember: σLHE = σNLO +O(αs) Finite

[inclusive NLO K-factor is ~1.4]
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pp→ tt+W+: LHE vs NLO

Transverse momentum and rapidity distribution for the t
at 7TeV LHC

agreement is within 1%, Remember: σLHE = σNLO +O(αs) Finite
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pp→ tt+W+: LHE vs NLO

Transverse momentum and rapidity distribution for the tT-pair
at 7TeV LHC

difference correlates with K-factor,
 Remember: σLHE = σNLO +O(αs) Finite
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pp→ t t, WWbb, tt + H, A, jet

...similar agreement between NLO and LHE
(discussed elsewhere)

- - -
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Predictions
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pp→ tt+Z: effect of the SMC

Transverse momentum and rapidity distribution for the 
hardest jet at 7TeV LHC

PS softens the p⊥-spectrum, rapidity is hardly affected
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pp→ tt+V: after PS, no cuts

Invariant mass of all same flavour lepton-antilepton pairs and
same-sign lepton and antilepton pairs at 7TeV LHC

Selection of peak region used in trilepton analysis below

-

10-2

10-1

1

10

0.75
1.0
1.25

0 20 40 60 80 100 120 140

d
σ

d
m

�+
�−

[fb
/G

eV
]

mt = 172.5GeV
mZ = 91.1876GeV
mW = 80.385GeV

(a)√
s = 7TeV CTEQ6.6M

t t̄Z
t t̄W+

t t̄W−

R
at
io

m�+ �− [GeV]

HERWIG/PYTHIA

10-2

10-1

1

10

0.95
1.0
1.05

0 20 40 60 80 100 120 140

d
σ

d
m

�±
�±

[fb
/G

eV
]

mt = 172.5GeV
mZ = 91.1876GeV
mW = 80.385GeV

(b)√
s = 7TeV CTEQ6.6M

t t̄Z
t t̄W+

t t̄W−

R
at
io

m�± �± [GeV]

HERWIG/PYTHIA

30



pp→ tt+V: trilepton channel

•Following experimental analysis done by CMS 
[CMS PAS TOP-12-014]
•Cuts favouring semileptonic decay of the tT-pair 
and same-flavour, opposite-sign lepton pairs from Z
•tTW contributions suppressed

-
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pp→ tt+V: trilepton channel

Invariant mass of reconstructed Z from 
same flavour lepton pairs at 7TeV LHC:

a) different channels accumulated b) different SMC
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pp→ tt+V: trilepton channel

•Background from Z+jets, tT, diboson production is not 
included in prediction, estimated 2.9±0.8 events by CMS
•Largest difference in (e,e)e channel is related to e-
reconstruction in the experiment (assumed 100% in 
prediction)
•b-tagging is by MCTRUTH in prediction
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PY1/PY0 HW/PY0

channel prediction
#of events

measured
#of events

(e,e)e 2.57±0.02 1+2.4-0.8

(e,e)μ 1.27±0.02 2+2.7-1.2

(μ, μ)e 1.36±0.02 2+2.7-1.2

(μ, μ) μ 3.05±0.02 4+3.2-2.0

total 8.26±0.02 9+4.1-3.0
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pp→ tt+V: trilepton channel

•At 8 TeV the cross section is 52% larger (in all channels)
•Differential distributions can be rescaled by a factor 1.52 
with good appriximation
•Total of 50 events are predicted for integrated luminosity 
L=20 fb-1 (by the end of 2012)

-

channel σ [fb]
at 7 TeV

σ [fb]
at 8 TeV

ratio

(e,e)e 0.516 0.762 1.52

(e,e)μ 0.255 0.388 1.52

(μ, μ)e 0.273 0.420 1.54

(μ, μ) μ 0.613 0.934 1.52

total 1.658 2.524 1.52
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pp→ t t + H, A, jet, W W b b

...are also done within LHCPhenonet, 
but discussed elsewhere

- -
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Conclusions and outlook
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Implemented Processes
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✓t T + Z
✓t T + H/A
✓t T + j
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