ESR at U. Silesia

Radomir Sevillano
Katowice, Poland

Ravello, 19 September 2012

Background:

Education

* Bachelor in physics - Autonomous University of Madrid.
- MSc International Physics Studies - Leipzig University.

Master Thesis topic: Vacuum interaction between one-dimensional crystals (pending paper).

Work experience

* Laser Shock Processing Simulations - Technical University of Madrid (1 paper).
* Programmer, Data base administrator, Network engineer at Accenture, Telefonica, Atos.

Present Status

* Institute: Institute of Physics (technical physics, medical physics, biophysics, nuclear physics, molecular physics and theoretical physics).
* University: University of Silesia, Katowice, Poland.
- Project: M1.4 On-Shell NLO amplitudes. M2.4 BSM decays.
* Supervisors: Professor J. Gluza (Silesia University) \& Dr. T.Riemann (DESY-Zeuthen).

Project overview

* Project focus I: SM and BSM. Phenomenology of Left-Right symmetric models at the LHC. Calculation of branching ratios for heavy non-standard particles. Automated implementation with Calchep and Feynrules.
* Project focus II: Implementation and improvement of tools for automation of loop calculations in the SM and beyond. Development of a numerical package based on a new approach to one-loop tensor reduction.

Research project I: Left-Right Model

* Phenomenology of Left-Right symmetric models at LHC.
* Using of Feynrules.
* Calculation of branching ratios, total widths and processes for heavy non-standard particles with Calchep \& Madgraph.
* Publication: Left-right symmetry at LHC and precise 1-loop low energy data - J. Chakrabortty, J. Gluza, R. Sevillano, R. Szafron, JHEP 2012,arXiv:1204.0736

Results: Calchep \& Madgraph

Figure 1: Branching ratios of W_{2}^{+}to the sum of quarks, leptons, Higgs and heavy bosons for $M_{D}=1 \& M_{D}=0.1, \xi=M_{D} / M_{N}$

Z_{2} decays

Figure 2: Branching ratios of Z_{2} to the sum of quarks, leptons, Higgs and heavy bosons for $M_{D}=1 \& M_{D}=0.1, \xi=M_{D} / M_{N}$

N1 decays

Figure 3: Branching ratios of $N 1$ to the sum of leptons, Higgs and heavy bosons for $M_{D}=1 \& M_{D}=0.1$

Cross-section for process $p p \rightarrow e^{+} N_{4}$

Figure 3.7: Cross-section for process $p p \longrightarrow e^{+} N_{4}$ for different sets of heavy neutrino masses $M_{N}, \sqrt{s}=14 \mathrm{TeV}$. The results are for degenerate heavy neutrino and Higgs particle masses. m_{H} masses are fixed at 10 TeV and $m_{H}=15 \mathrm{TeV}$. The whole shaded bands correspond to parameters labeled as Set \mathbf{A} in Table 2.1 and Fig. 2.2. In addition, for each v_{R} between $\left(\mathrm{v}_{R}\right)_{\min }$ and $\left(\mathrm{v}_{R}\right)_{B}$ in Fig. 2.2, heavy neutrino mass spectrum which is in agreement with muon decay data is obtained (we call it Set B). In this way a possible cross-section for allowed $M_{W_{2}}-M_{N}$ masses is constrained dramatically. These regions are denoted by almost vertical and thin black stripes within the wider shaded regions.

Systematic approach to tensor reductions:

1,2,3,4-point functions:

- Passarino, Veltman 1978

Open source programs for 5,6-point reductions:

* LoopTools/FF ($n \leq 5$), T. Hahn 1998,1990.
* Golem95 T. Binoth et al. 2008
* PJFry V. Yundin, PhD thesis 2012 + Fleischer, T.R. 2010

Need in addition a library of scalar functions:

* 't Hooft, Veltman 1979
* QCDloop/FF K. Ellis and G. Zanderighi 2007,1990
* LoopTools/FF T. Hahn 1998,1990
* OneLOop (complex masses) van Hameren 2010

Research project II: Tensor reduction of Feynmann integrals

Main source: New results for algebraic tensor reduction of Feynman integrals - Jochem Fleischer, Tord Riemann, Valery Yundin, arXiv:1202.0730 n-point tensor integrals of rank R.

$$
\begin{align*}
E^{\mu} & =\sum_{i=1}^{4} q_{i}^{\mu} E_{i}, E^{\mu \nu}=\sum_{i, j=1}^{4} q_{i}^{\mu} q_{i}^{\nu} E_{i j}+g^{\mu \nu} E_{00}, \tag{1}\\
I_{n}^{\mu_{1} \cdots \mu_{R}} & =\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{k^{\mu_{1}} \ldots k^{\mu} R}{\left(\left(k-q_{1}\right)^{2}-m_{1}^{2}\right) \ldots\left(\left(k-q_{n}\right)^{2}-m_{n}^{2}\right)}, \\
& \xrightarrow[c]{k-q_{1}, m_{1}},
\end{align*}
$$

Contractions with external momenta p_{i}

We expect improvements of efficiency by using contracted tensor integrals
[Fleischer,TR: PLB 2011]

$$
\begin{gathered}
I_{5}^{\mu}=E Q_{0}^{\mu}-\sum_{s=1}^{5} I_{4}^{s} Q_{s}^{\mu}, \\
\left(q_{a} \cdot I_{5}\right)=-\frac{1}{2} E\left(Y_{a 5}-Y_{55}\right)-\frac{1}{\binom{0}{0}_{5}} \sum_{s=1}^{5}\binom{s}{0}_{5} I_{4}^{s} \\
\text { where } \left.Y_{i j}=-\left(q_{i}-q_{j}\right)^{2}+m_{i}^{2}+m_{j}^{2}-\delta_{5 s}\right)=\sum_{i=1}^{4} q_{i}^{\mu} E_{i} \\
()_{n}=\left|\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \ldots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \ldots & Y_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right|
\end{gathered}
$$

Project II summary

* Proper isolation of inverse Gram determinants.
* Numerical C++ and F90 package.
* Perform multiple sums with signed minors and scalar products after contractions with chords or external momenta.
* Collaboration with J.Fleischer of Bielefeld University and T.Riemann from DESY-Zeuthen in Germany. Meetings in Zeuthen and Wernigerode.

Overview of Training

* Helmholtz Lattice QCD school 2011 in Dubna, Russia (September 2011)
* DESY-Zeuthen, Germany (December 2011).
* Winter School in Locarno, Switzerland (January 2012).
* LHCPhenoNet Annual Workshop 2012, Durham, UK (March 2012).
* Loops and Legs 2012, Wernigerode,Germany (April 2012).
* Planck 2012: from the Planck scale to the electroweak scale, Warsaw, Poland (June 2012).
* Silesia University: Phd courses: Montecarlo methods (Prof. M. M. Maska), Computational Algebra Systems (Prof. J.Gluza), Internal Theoretical Physics seminars and lectures from visiting scientists.

Seminars given:

* Using Feynrules, Calchep and Madgraph for BSM at LHC studies (Katowice, Poland and Durham,UK).

Future plans:

* 2 months internship in RISC Gmbh at Linz, Austria (October-December 2012). Will work on efficient solution method for a large scale and sparse system of linear equations.
* Application of program packages at LHC.

