# Reduction of two loop Amplitudes @ the Integrand level



Ioannis Malamos (IFIC, Valencia) Ravello, LHCphenonet midterm

meeting, 17/09/2012



# LHC performance calls for serious theoretical work



- Precision becomes important for most of the processes
- Fixed order calculations need to advance
- NLO complete and automated, NNLO in the making

# On the virtual part of NLO calculations

- Loop diagrams are considered to be the bottleneck of beyond LO calculations
- Large number of Feynman diagrams Complicated loop integrals
- Reduction techniques : Minimize the size and the difficulty of such calculations
- Working at the amplitude level, suitable for numerical approach

# Historical Background

- D.B.Melrose, G.Källèn-J.Toll (1965)
- Passarino-Veltman
- Unitarity based methods (Bern, Dixon, Dunbar, Kosower – at the amplitude level)
- Generalised Unitarity (Britto, Cachazo, Feng)
- Reduction at the Integrand level (OPP)

## OPP Method @ one loop

$$A \to \frac{N(q)}{\prod D_{i}}$$

$$N(q) = \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[ d(i_{0}i_{1}i_{2}i_{3}) + \tilde{d}(q; i_{0}i_{1}i_{2}i_{3}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[ c(i_{0}i_{1}i_{2}) + \tilde{c}(q; i_{0}i_{1}i_{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[ b(i_{0}i_{1}) + \tilde{b}(q; i_{0}i_{1}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}$$

$$+ \sum_{i_{0}}^{m-1} \left[ a(i_{0}) + \tilde{a}(q; i_{0}) \right] \prod_{i \neq i_{0}}^{m-1} D_{i}$$

Solving for known values of the loop momentum q

# Completing the NLO

- Quadruple, triple, double and single cuts to obtain the coefficients
- Terms with a tilde vanish upon integration (spurious terms)
- Scalar Integrals
- Rational terms (working in d dimensions)
- Real part

#### • The NLO revolution



| 2009: NLO W+3j [Rocket: Ellis, Melnikov & Zanderighi]                   | [unitarity]   |
|-------------------------------------------------------------------------|---------------|
| 2009: NLO $W+3j$ [BlackHat: Berger et al]                               | [unitarity]   |
| 2009: NLO tt̄bb̄ [Bredenstein et al]                                    | [traditional] |
| 2009: NLO tt̄b̄b̄ [HELAC-NLO: Bevilacqua et al]                         | [unitarity]   |
| 2009: NLO $q\bar{q} \rightarrow b\bar{b}b\bar{b}$ [Golem: Binoth et al] | [traditional] |
| 2010: NLO ttjj [HELAC-NLO: Bevilacqua et al]                            | [unitarity]   |
| 2010: NLO $Z+3j$ [BlackHat: Berger et al]                               | [unitarity]   |

### Integrand Reduction at two loops

- Ossola, Mastrolia (2011)
- Badger, Frellesvig, Zhang (2011)
- Zhang (2012)
- Mirabella, Ossola, Peraro, Mastrolia (2012)
- Kleiss, I.M., Papadopoulos, Verheyen (2012)

#### Generic two-loop graph: iGraph

R. H. P. Kleiss, I. Malamos, C. G. Papadopoulos and R. Verheyen, arXiv:1206.4180 [hep-ph].



$$D(l_1 + p_i)$$
,  $D(l_2 + p_i)$ ,  $D(l_1 + l_2 + p_k)$ 

# Counting to "one"

- Consider scalar integrals without loss of generality
- Write the numerator (1) of these integrals in terms of Denominators times coefficients (polynomials in the loop momenta)
- Investigate when this systems has solutions
- What is the minimal number of Denominators/ rank of the coefficients?

### In other words solve the equation:

$$\sum_{j=1}^{n_1} x_j D(l_1 + p_j) + \sum_{j=n_1+1}^{n_1+n_2} x_j D(l_1 + l_2 + p_j) + \sum_{j=n_1+n_2+1}^{n} x_j D(l_2 + p_j) = 1$$

Let us go a step back at one loop

$$1 = T_1(q)D_1 + T_2(q)D_2 + \cdots + T_n(q)D_n$$

Constant terms:  $T_j(q) = x_j$ 

$$q^{2} \sum_{j=1}^{n} x_{j} + 2q_{\mu} \sum_{j=1}^{n} x_{j} p_{j}^{\mu} + \sum_{j=1}^{n} x_{j} \mu_{j} = 1 .$$

$$\sum_{j=1}^{n} x_j = 0 \quad , \quad \sum_{j=1}^{n} x_j p_j^{\mu} = 0 \quad , \sum_{j=1}^{n} x_j \mu_j = 1$$

• solution exists for n = 6 d = 4

Linear terms  $T(q) = P_1(q)$ , count tensor structures:

$$1 \ , \ q^{\mu} \ , \ q^{\mu}q^{\nu} \ , \ q^2q^{\mu} \ .$$

There are, for d=4, therefore 1+4+10+4=19 independent tensor structures. In d dimensions, tensor up to rank k, N(d,k) number of independent tensor structures

$$N(d,k) = \begin{pmatrix} d-1+k \\ k \end{pmatrix} + \sum_{p=0}^{k+1} \begin{pmatrix} d-1+p \\ p \end{pmatrix}.$$

In the table below we give the results for various ranks and dimensionalities.

| k   | 0 | 1  | 2   | 3   | 4   |
|-----|---|----|-----|-----|-----|
| d=1 | 3 | 4  | 5   | 6   | 7   |
| 2   | 4 | 8  | 13  | 19  | 26  |
| 3   | 5 | 13 | 26  | 45  | 71  |
| 4   | 6 | 19 | 45  | 90  | 161 |
| 5   | 7 | 26 | 71  | 161 | 322 |
| 6   | 8 | 34 | 105 | 266 | 588 |

Values of N(d, k)

The OPP-"miracle" is that the OPP equation works with only 10(6) different coefficients

$$1 = \sum_{i=1}^{5} D_i(q)(c_i^{(0)} + c_i^{(1)} \epsilon_i(q))$$

all  $c_i^{(1)}$  being equal! rank deficient problems

## Return to two loops

- Order of the iGraph =  $n_1+n_2+n_3$
- Constraints:  $n_{1,2,3} \le 4$  (one loop constraint)
- $n_1+n_2+n_3 \le 11 \ (=2d+3)$ , constant coefficients

#### Linear terms

$$x_i = a_i + \sum_j b_{ij} (l_1 \cdot t_j) + \sum_j c_{ij} (l_2 \cdot t_j)$$

$$T(d) = (4d^2 + 18d + 2)/2$$

| n    | d = 6  | d=5    | d=4   | d=3   | d=2  | d=1  |
|------|--------|--------|-------|-------|------|------|
| 3    | 39-0   | 33-0   | 27-0  | 21-0  | 15-0 | 9-0  |
| 4    | 52-0   | 44-0   | 36-0  | 28-0  | 20-0 | 12-2 |
| 5    | 65-1   | 55-1   | 45-1  | 35-1  | 25-1 | 15-5 |
| 6    | 78-3   | 66-3   | 54-3  | 42-3  | 30-3 |      |
| 7    | 91-6   | 77-6   | 63-6  | 49-6  | 35-8 |      |
| 8    | 104-10 | 88-10  | 72-10 | 56-10 |      |      |
| 9    | 111-15 | 99-15  | 81-15 | 63-17 |      |      |
| 10   | 130-21 | 110-21 | 90-21 |       |      |      |
| 11   | 143-28 | 121-28 | 99-30 |       |      |      |
| 12   | 156-36 | 132-36 |       |       |      |      |
| 13   | 169-45 | 143-47 |       |       |      |      |
| 14   | 182-55 |        |       |       |      |      |
| 15   | 195-55 |        |       |       |      |      |
| T(d) | 127    | 96     | 69    | 46    | 27   | 10   |

# Quadratic terms

$$x_i = a_i + \sum_j b_{ij}(l_1 \cdot t_j) + \sum_j c_{ij}(l_2 \cdot t_j) + \sum_{j \leq k} d_{ijk}(l_1 \cdot t_j)(l_1 \cdot t_k) + \cdots$$

$$T(d) = 4d^3/3 + 10d^2 + 20d/3 - 2$$

| n    | d = 4   | d = 3   | d=2   |
|------|---------|---------|-------|
| 3    | 135-4   | 84-3    | 45-3  |
| 4    | 180-6   | 128-6   | 60-6  |
| 5    | 225-18  | 140-16  | 75-15 |
| 6    | 270-38  | 168-32  | 90-30 |
| 7    | 315-65  | 196-53  |       |
| 8    | 360-98  | 224-80  |       |
| 9    | 405-136 | 252-108 |       |
| 10   | 450-180 |         |       |
| 11   | 495-225 |         |       |
| T(d) | 270     | 144     | 60    |

#### Cubic terms

$$x_i = a_i + \sum_j b_{ij}(l_1 \cdot t_j) + \cdots + \sum_{j \leq k} g_{ijkl}(l_1 \cdot t_j)(l_1 \cdot t_k)(l_1 \cdot t_l) + \cdots$$

$$T(d) = 2d^4/3 + 22d^3/3 + 71d^2/6 + d/6 + 1$$

| n    | d = 6     | d = 5     | d=4      | d=3     |
|------|-----------|-----------|----------|---------|
| 5    |           |           |          | 420/332 |
| 6    |           |           |          | 504/352 |
| 7    |           |           | 1155/803 | 588/360 |
| 8    |           |           | 1320/823 | 672/360 |
| 9    |           | 2574/1603 | 1485/831 |         |
| 10   |           | 2860/1623 | 1650/831 |         |
| 11   | 5005/2848 | 3146/1631 |          |         |
| 12   | 5460/2868 | 3432/1631 |          |         |
| 13   | 5915/2876 |           |          |         |
| 14   | 6370/2876 |           |          |         |
| T(d) | 2876      | 1631      | 831      | 360     |

#### **ANSWER:**

- Every two loop integral can be written in terms of integrals up to 2d Denominators
- ▶ In most cases cubic terms are needed (d=2 special case)
- The 2d basis Integrals are compatible with Unitarity (from the constraint)
- There exist l<sub>1</sub>,l<sub>2</sub> such that 2d denominators vanish → no further reduction is possible this way (see also Nullstellensatz theorem – Mirabela, Ossola, Peraro, Mastrolia)

# OPP @ two loops

$$1 = \sum D_i R_i + \sum D_i D_j R_{ij} + \sum D_i D_j D_k R_{ijk} + \cdots$$

• Reducible scalar products RSP give rise to terms with higher powers of  $D_i$ ,

$$D \otimes RSP \rightarrow D \otimes D$$

Parametrizing the "residue" functions with irreducible scalar products
 ISP

$$R = D \otimes ISP$$

Solving the master equation

$$1 = 1$$

# OPP @ two loops

- Classify all possible residues for every integral of the basis
- Use Unitarity cuts to extract the coefficients (at the maximal cuts the number of solutions matches the number of coefficients)
- Freedom in the choice of the ISP

# Finding a minimal basis

- The unitarity basis described above is not a minimal one
- Reduction to true Master Integrals demands the use of IBP identities (Chetyrkin, Tkatchov)
- Removal of double poles
- Combine OPP with IBP's

#### What about NNLO?

- Integrand reduction for the virtual part (in progress)
- Rational terms
- Computation of Master Integrals (Significant progress )
- Virtual Real
- Real Real

#### Conclusions

- Integrand reductions boosted the NLO computations leading to an NLO revolution the last 5 years
- NNLO results also important for the LHC
- There is a Unitarity based basis for every two loop Integrand
- The Unitarity base is not necessarily the minimal basis-combine with IBP

#### Conclusions 2

- Significant progress to all pieces of the NNLO
- Extension to more than two loops in the integrand reduction part are obvious
- More results to come, the NNLO revolution has began!

# Thank you, enjoy the meeting (and Ravello)