EH

New techniques in the computation of scattering amplitudes

Claude Duhr

LHCPhenoNet Mid-Term Meeting
Ravello, 17/09/2012

Scattering amplitudes in QFT

- LHC physics is dominated by QCD.
- State of the art:
\Rightarrow Tree-level: essentially solved (except multi-leg amplitudes).

Scattering amplitudes in QFT

- LHC physics is dominated by QCD.
- State of the art:
\Rightarrow Tree-level: essentially solved (except multi-leg amplitudes).
\Rightarrow One loop:
\checkmark Integral basis (boxes, triangles, bubbles)
\checkmark Essentially solved

Scattering amplitudes in QFT

- LHC physics is dominated by QCD.
- State of the art:
\Rightarrow Tree-level: essentially solved (except multi-leg amplitudes).
\Rightarrow One loop:
\checkmark Integral basis (boxes, triangles, bubbles)
\checkmark Essentially solved
\Rightarrow Two loops:
- Two-loop amplitudes in general unknown.
- No two-loop integral basis known.
[See talks by Gluza and Malamos]

Multi-loop computations

- Why are multi-loop computations so difficult..?
- Integration-by-parts identities allow to reduce the problem to the computation of a minimal set of master integrals.
- Quantities are divergent:
\Rightarrow UV \& IR divergences.
- Two-loop integrals are generically polylogarithms of weight 4 in many external physical parameters.
= multiple polylogarithms.
- need to evaluate these functions numerically in a fast and efficient way, including all the branch cuts, etc.
- In other words, polylogarithms and their generalizations are everywhere!
\Rightarrow Need to understand these functions!

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.
\star Harmonic polylogarithms.

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.
* Harmonic polylogarithms.
* 2d harmonic polylogarithms.

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.
^ Harmonic polylogarithms.
* 2d harmonic polylogarithms.
^ Cyclotomic harmonic polylogarithms.

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.
^ Harmonic polylogarithms.
* 2d harmonic polylogarithms.
^ Cyclotomic harmonic polylogarithms.
^ All these are just special classes of multiple polylogarithms.

The life-cycle of a loop computation

- The final goal is to obtain an expression of the loop integrals in terms of
\Rightarrow Transcendental numbers: mutliple zeta values, $\log 2$, etc.
\Rightarrow Transcendental functions: a whole zoo was discovered
^ (Classical) polylogarithms.
\star Harmonic polylogarithms.
* 2d harmonic polylogarithms.
^ Cyclotomic harmonic polylogarithms.
^ All these are just special classes of multiple polylogarithms.
^ Elliptic functions.
- In this talk: will concentrate exclusively on polylogarithms.

The life-cycle of a loop computation

- Recursive definition of multiple polylogarithms:

$$
\left.G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \right\rvert\, \operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{n-1}(t)
$$

The life-cycle of a loop computation

- Recursive definition of multiple polylogarithms:

$$
\left.G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \right\rvert\, \operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{n-1}(t)
$$

- All the special functions physicists defined are just special cases thereof:
\Rightarrow (Classical) polylogarithms: $\operatorname{Li}_{n}(z)=-G(0, \ldots, 0,1 ; z)$

The life-cycle of a loop computation

- Recursive definition of multiple polylogarithms:

$$
\left.G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \right\rvert\, \operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{n-1}(t)
$$

- All the special functions physicists defined are just special cases thereof:
\Rightarrow (Classical) polylogarithms: $\operatorname{Li}_{n}(z)=-G(0, \ldots, 0,1 ; z)$
\Rightarrow Harmonic polylogarithms: $a_{i} \in\{-1,0,1\}$

The life-cycle of a loop computation

- Recursive definition of multiple polylogarithms:
$\left.G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \right\rvert\, \operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{n-1}(t)$
- All the special functions physicists defined are just special cases thereof:
\Rightarrow (Classical) polylogarithms: $\operatorname{Li}_{n}(z)=-G(0, \ldots, 0,1 ; z)$
\Rightarrow Harmonic polylogarithms: $a_{i} \in\{-1,0,1\}$
$\Rightarrow 2 d$ harmonic polylogarithms: e.g., $a_{i} \in\{0,1, a\}$

The life-cycle of a loop computation

- Recursive definition of multiple polylogarithms:
$\left.G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \right\rvert\, \operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{n-1}(t)$
- All the special functions physicists defined are just special cases thereof:
\Rightarrow (Classical) polylogarithms: $\operatorname{Li}_{n}(z)=-G(0, \ldots, 0,1 ; z)$
\Rightarrow Harmonic polylogarithms: $a_{i} \in\{-1,0,1\}$
$\Rightarrow 2 d$ harmonic polylogarithms: e.g., $a_{i} \in\{0,1, a\}$
\Rightarrow Cyclotomic harmonic polylogarithms: roots of unity.

The life-cycle of a loop computation

- Even if an amplitude is simple, it might be that our approach to the problem leads to a difficult answer.
- The polylogarithms satisfy various complicated functional equations.
\Rightarrow The simplicity of the answer might be hidden behind a swath of functional equations.

$$
-\mathrm{Li}_{2}(z)-\ln z \ln (1-z)=\operatorname{Li}_{2}(1-z)-\frac{\pi^{2}}{6}
$$

- In other words we need to 'control' the functional equations among polylogarithms.

Number theory and Loop integrals

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
\Rightarrow 'Mathematics of the 19th century'.

Number theory and Loop integrals

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
\Rightarrow 'Mathematics of the 19th century'.
- No! Over the last 20 years polylogarithms were a very active field of research in pure mathematics.
- Mathematicians have discovered very far reaching algebraic structures underlying polylogarithms.
- In particular, mathematicians showed that multiple polylogarithms form a Hopf algebra.

Number theory and Loop integrals

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
\Rightarrow 'Mathematics of the 19th century'.
- No! Over the last 20 years polylogarithms were a very active field of research in pure mathematics.
- Mathematicians have discovered very far reaching algebraic structures underlying polylogarithms.
- In particular, mathematicians showed that multiple polylogarithms form a Hopf algebra.
- Consequence: All functional equations are pure combinatorics!
\Rightarrow You do not even need to know the integral in order to derive the relations among them!

Hopf algebras

Hopf algebras

- Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).

Hopf algebras

- Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
- Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).

Hopf algebras

- Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
- Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).
- Hopf algebra: Vector space with both multiplication and comultiplication, i.e., one can 'fuse' and 'break apart' in a consistent manner.

Hopf algebras

- Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
- Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).
- Hopf algebra: Vector space with both multiplication and comultiplication, i.e., one can 'fuse' and 'break apart' in a consistent manner.
- Goncharov showed that mutliple polylogarithms form a Hopf algebra.

$$
\begin{gathered}
\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1 \\
\Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}
\end{gathered}
$$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.
\Rightarrow Can the expression be simplified?

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

$$
{ }^{\prime} \mathrm{Li}_{4}{ }^{\prime}
$$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ' $\mathrm{Li}_{4}{ }^{\prime}$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ${ }^{\prime} \mathrm{Li}_{4}{ }^{\prime}$
Break it into pieces
${ }^{\prime} \mathrm{Li}_{3} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{2}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{3}{ }^{\prime}$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ${ }^{\prime} \mathrm{Li}_{4}{ }^{\prime}$

Still too
complicated ${ }^{‘} \mathrm{Li}_{3} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{2}{ }^{\prime}$
Break it into pieces

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ' Li_{4} '

Still too

${ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} ' \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{2} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{2}{ }^{\prime}$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ' Li_{4} '

Still too
complicated ${ }^{\prime} \mathrm{Li}_{3} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{'} \mathrm{Li}_{2} \otimes \mathrm{Li}_{2}{ }^{\prime} \longrightarrow{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{3}{ }^{\prime}$

${ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} ' \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{2} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{2}{ }^{\prime}$
${ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1}{ }^{\prime}$

$$
\operatorname{Li}_{1}(z)=-\log (1-z) \quad \log (a \cdot b)=\log a+\log b
$$

The Hopf algebra of polylogarithms

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_{4} 's.

Too complicated to handle ${ }^{\prime} \mathrm{Li}_{4}$ '

Still too
complicated ' ${ }^{\prime} \mathrm{Li}_{3} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{2}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{3}{ }^{\prime}$

${ }^{\prime} \mathrm{Li}_{2} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{2} \otimes \mathrm{Li}_{1}{ }^{\prime} \quad{ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{2}{ }^{\prime}$
${ }^{6} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1},>$ Symbol
$\operatorname{Li}_{1}(z)=-\log (1-z) \quad \log (a \cdot b)=\log a+\log b$

The Hopf algebra of polylogarithms

Too complicated to handle ' Li_{4} '
Still too

${ }^{\prime} \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1} \otimes \mathrm{Li}_{1}$,

$$
\operatorname{Li}_{1}(z)=-\log (1-z) \quad \log (a \cdot b)=\log a+\log b
$$

The Hopf algebra of polylogarithms

- At the end of this procedure, we have broken everything into little pieces (logarithms = symbol), for which all identities are known.
- We then need to reassemble the pieces to find the simplified expression (This is the most difficult step!)
- At each step information is lost, but in a controlled way:
- Can be recovered by going back up one step at the time.

Hopf algebras and Loop integrals

- Understanding the mathematical structure underlying multiple polylogarithms opens new possibilities for the computation of Feynman integrals and scattering amplitudes.

Hopf algebras and Loop integrals

- Understanding the mathematical structure underlying multiple polylogarithms opens new possibilities for the computation of Feynman integrals and scattering amplitudes.
- Substantial simplifications of complicated expressions:
\Rightarrow Six-point MHV amplitude in N=4 Super Yang-Mills.
\Rightarrow Two-loop helicity amplitudes for $\mathrm{H}+3 \mathrm{~g}$.

Hopf algebras and Loop integrals

- Understanding the mathematical structure underlying multiple polylogarithms opens new possibilities for the computation of Feynman integrals and scattering amplitudes.
- Substantial simplifications of complicated expressions:
\Rightarrow Six-point MHV amplitude in N=4 Super Yang-Mills.
\Rightarrow Two-loop helicity amplitudes for $\mathrm{H}+3 \mathrm{~g}$.
- Determine space of functions a priori:
- Generalized ladder integrals.
$\Rightarrow \mathrm{N}=4$ SYM six-point amplitude in the Regge limit.
\Rightarrow Two-loop three mass triangle integrals.

6-point amplitude in N=4 SYM

- Evaluating the individual diagrams one arrives at a very complicated combination of multiple polylogarithms (17 pages),

$$
\begin{align*}
& R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)= \tag{H.1}\\
& \frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+ \\
& \frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+ \\
& \frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+ \\
& \frac{3}{2} G\left(0,0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+ \\
& \frac{3}{2} G\left(0,0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)- \\
& \frac{1}{2} G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{2}} ; 1\right)+G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{3}} ; 1\right)+
\end{align*}
$$

[Del Duca, CD, Smirnov]

6-point amplitude in $\mathrm{N}=4$ SYM

$$
\begin{gathered}
R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \begin{array}{c}
\text { [Goncharov, Spradlin, } \\
\text { Vergu, Volovich] }
\end{array} \\
\quad-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72} \\
x_{i}^{ \pm}=u_{i} x^{ \pm}, x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}}, \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}, \\
L_{4}\left(x^{+}, x^{-}\right)=\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4}+\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right) \\
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{gathered}
$$

- This was the first time the new mathematical methods were applied.

Higgs + 3 gluons

- Gehrmann, Jaquier, Glover and Koukoutsakis have recently computed the two-loop helicity amplitudes for a Higgs boson +3 gluons
\Rightarrow in the decay region

$$
H \rightarrow g^{+} g^{+} g^{+} \quad H \rightarrow g^{+} g^{+} g^{-}
$$

\Rightarrow and the scattering region

$$
g^{+} g^{+} \rightarrow g^{+} H \quad g^{+} g^{+} \rightarrow g^{-} H \quad g^{+} g^{-} \rightarrow g^{+} H
$$

- Kinematics (in the decay region):

$$
\begin{array}{r}
x_{1}=\frac{s_{12}}{m_{H}^{2}}, \quad x_{2}=\frac{s_{23}}{m_{H}^{2}}, \quad x_{3}=\frac{s_{31}}{m_{H}^{2}} \\
0<x_{i}<1 \quad \text { and } \quad x_{1}+x_{2}+x_{3}=1
\end{array}
$$

Higgs + 3 gluons

- The result was expressed in terms of complicated combinations of ' 2 d harmonic polylogarithms'.
\Rightarrow Symmetries completely lost (e.g. Bose symmetry).
\Rightarrow Very long and complicated.
\Rightarrow Numerical evaluation of complicated special functions.
\Rightarrow Analytic continuation from decay to scattering region very complicated.

Higgs + 3 gluons

- The result was expressed in terms of complicated combinations of ' 2 d harmonic polylogarithms'.
\Rightarrow Symmetries completely lost (e.g. Bose symmetry).
\Rightarrow Very long and complicated.
\Rightarrow Numerical evaluation of complicated special functions.
\Rightarrow Analytic continuation from decay to scattering region very complicated.
- Brandhuber, Gang and Travaglini observed that the symbol of the leading color weight 4 part (after subtracting the one-loop squared) is equal to the symbol of the form factor of 3 gluons in $\mathrm{N}=4$ Super Yang-Mills.
\Rightarrow A simpler representation of the Higgs amplitudes in terms of classical polylogarithms only should exist.

Higgs +3 gluons

$$
\begin{aligned}
\bar{A}_{\alpha}^{(2)} & =\mathcal{R}_{3}^{(2)}-\frac{\pi^{2}}{6} A_{\alpha}^{(1)}-\frac{1}{4} \zeta_{3} B_{\alpha}^{(1)}-\frac{\pi^{4}}{2880} \\
& \frac{11}{6}\left\{\Lambda_{3}\left(-\frac{x_{1} x_{3}}{x_{2}}\right)+\Lambda_{3}\left(-\frac{x_{2} x_{3}}{x_{1}}\right)+\Lambda_{3}\left(-\frac{x_{1} x_{2}}{x_{3}}\right)-\sum_{i=1}^{3} \operatorname{Li}_{3}\left(1-\frac{1}{x_{i}}\right)\right. \\
& -\Lambda_{3}\left(-\frac{x_{1}}{x_{2}}\right)-\Lambda_{3}\left(-\frac{x_{2}}{x_{1}}\right)-\Lambda_{3}\left(-\frac{x_{1}}{x_{3}}\right)-\Lambda_{3}\left(-\frac{x_{3}}{x_{1}}\right)-\Lambda_{3}\left(-\frac{x_{2}}{x_{3}}\right)-\Lambda_{3}\left(-\frac{x_{3}}{x_{2}}\right) \\
& +\frac{1}{2} \ln \left(x_{1} x_{2} x_{3}\right) A_{\alpha}^{(1)}+\frac{7}{2} \sum_{i=1}^{3}\left[\operatorname{Li}_{2}\left(1-x_{i}\right) \ln x_{i}\right]+\frac{3}{4} \ln x_{1} \ln x_{2} \ln x_{3}+\frac{1}{6} \ln ^{3}\left(x_{1} x_{2} x_{3}\right) \\
& \left.-\frac{5}{16} \pi^{2} \ln \left(x_{1} x_{2} x_{3}\right)-\frac{3}{8} \zeta_{3}+i \pi A_{\alpha}^{(1)}+\frac{i \pi^{3}}{16}-\frac{1}{3} \sum_{i=1}^{3} \ln ^{3} x_{i}\right\} \\
& +\frac{1}{36} \sum_{i=1}^{3}\left[\frac{P_{1}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{x_{i-1}^{2} x_{i+1}^{2}} \operatorname{Li}_{2}\left(1-x_{i}\right)+\frac{P_{2}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{x_{i}^{2}} \ln x_{i-1} \ln x_{i+1}+\frac{121}{4} \ln ^{2} x_{i}\right] \\
& +\frac{P_{3}\left(x_{1}, x_{2}, x_{3}\right)}{144 x_{1}^{2} x_{2}^{2} x_{3}^{2}} \pi^{2}-\frac{121}{72} i \pi \ln \left(x_{1} x_{2} x_{2}\right)+\frac{11}{36} i \pi\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)+\frac{185}{24} i \pi \\
& +\frac{1}{72} \sum_{i=1}^{3} \frac{P_{4}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{x_{i-1} x_{i+1}} \ln x_{i}-\frac{1}{72}\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right)^{2}+\frac{247}{108}\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right) \\
& +\frac{1321}{216},
\end{aligned}
$$

\Rightarrow Kummer' function

$$
\Lambda_{n}(z)=\int_{0}^{z} \mathrm{~d} t \frac{\ln ^{n-1}|t|}{1+t}=(n-1)!\sum_{k=0}^{n-1} \frac{(-1)^{n-k}}{k!} \ln ^{k}|z| \mathrm{Li}_{n-k}(z)
$$

Higgs + 3 gluons

$$
\begin{align*}
\bar{D}_{\alpha}^{(2)} & =-\zeta_{3}+\frac{i \pi}{4}-\frac{1}{6}\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right)+\frac{67}{48}+\frac{P_{5}\left(x_{1}, x_{2}, x_{3}\right)}{72 x_{1}^{2} x_{2}^{2} x_{3}^{2}} \pi^{2} \\
& +\frac{1}{12} \sum_{i=1}^{3}\left[\frac{P_{6}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{x_{i-1}^{2} x_{i+1}^{2}} \operatorname{Li}_{2}\left(1-x_{i}\right)+\frac{P_{7}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{x_{i}^{2}} \ln x_{i-1} \ln x_{i+1}\right. \tag{7.19}\\
& \left.+\frac{P_{8}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{2 x_{i-1} x_{i+1}} \ln x_{i}\right]
\end{align*}
$$

$$
\begin{align*}
\bar{E}_{\alpha}^{(2)} & =-\frac{i \pi^{3}}{48}-\frac{i \pi}{3} A_{\alpha}^{(1)}-\frac{1}{12} \ln \left(x_{1} x_{2} x_{3}\right)\left(\ln x_{1} \ln x_{2}+\ln x_{1} \ln x_{3}+\ln x_{2} \ln x_{3}\right) \\
& +\frac{P_{13}\left(x_{1}, x_{2}, x_{3}\right)}{432}+\frac{7}{12} \ln x_{1} \ln x_{2} \ln x_{3}-\frac{5}{48} \pi^{2} \ln \left(x_{1} x_{2} x_{3}\right)-\frac{29}{24} \zeta_{3} \\
& +\frac{11}{18} i \pi \ln \left(x_{1} x_{2} x_{3}\right)+\frac{P_{11}\left(x_{1}, x_{2}, x_{3}\right)}{288 x_{1}^{2} x_{2}^{2} x_{3}^{2}} \pi^{2}+\sum_{i=1}^{3}\left[\operatorname{Li}_{3}\left(x_{i}\right)-\frac{1}{3} \mathrm{Li}_{3}\left(1-x_{i}\right)\right. \\
& +\frac{1}{6} \operatorname{Li}_{2}\left(1-x_{i}\right) \ln x_{i}+\frac{1}{2} \ln \left(1-x_{i}\right) \ln ^{2} x_{i}+\frac{1}{6} \ln \left(x_{1} x_{2} x_{3}\right) \operatorname{Li}_{2}\left(1-x_{i}\right) \tag{7.20}\\
& +\frac{P_{9}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{36 x_{i-1}^{2} x_{i+1}^{2}} \operatorname{Li}_{2}\left(1-x_{i}\right)+\frac{P_{10}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{36 x_{i}^{2}} \ln x_{i-1} \ln x_{i+1} \\
& \left.+\frac{11}{36} \ln ^{2} x_{i}+\frac{P_{12}\left(x_{i}, x_{i-1}, x_{i+1}\right)}{216 x_{i-1} x_{i+1}} \ln x_{i}\right]-\frac{13}{36} i \pi\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right)-\frac{71}{18} i \pi,
\end{align*}
$$

Higgs +3 gluons

$$
\begin{aligned}
\bar{F}_{\alpha}^{(2)} & =-\frac{i \pi}{18} \ln \left(x_{1} x_{2} x_{3}\right)-\frac{11}{144} \pi^{2}+\frac{1}{36} \sum_{i=1}^{3} \ln ^{2} x_{i}-\frac{5}{54} \ln \left(x_{1} x_{2} x_{3}\right)+\frac{5 i \pi}{18} \\
& +\frac{i \pi}{18}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)+\frac{5}{54}\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right) \\
& -\frac{1}{72}\left(x_{1} x_{2}+x_{3} x_{2}+x_{1} x_{3}\right)^{2}-\frac{x_{1} x_{2} x_{3}}{18} \sum_{i=1}^{3} \frac{\ln x_{i}}{x_{i}}
\end{aligned}
$$

- Originally, the expressions filled up more than 6 pages!
- Bose symmetry is now completely manifest.
- Only simple functions (classical polylogarithms) with simple arguments.
\Rightarrow easy numerical evaluation.
- Similar results can be obtained for $H \rightarrow g^{+} g^{+} g^{-}$.

Single-valued polylogarithms

- In some cases it is possible to determine the space of functions a priori from general considerations.

Single-valued polylogarithms

- In some cases it is possible to determine the space of functions a priori from general considerations.
- In particular, in the case of
\Rightarrow generalized ladder integrals,
\Rightarrow the six-point $N=4$ SYM amplitude in the Regge limit,
\Rightarrow three-mass triangle integrals, one can show on general grounds that the space of functions is the (almost) the same, and corresponds to polylogarithms in one complex variable z without any branch cuts in the complex z plane (single-valued).

Single-valued polylogarithms

- In some cases it is possible to determine the space of functions a priori from general considerations.
- In particular, in the case of
\Rightarrow generalized ladder integrals,
\Rightarrow the six-point $\mathrm{N}=4 \mathrm{SYM}$ amplitude in the Regge limit,
\Rightarrow three-mass triangle integrals, one can show on general grounds that the space of functions is the (almost) the same, and corresponds to polylogarithms in one complex variable z without any branch cuts in the complex z plane (single-valued).
- These functions can be classified [Brown], and it turns out that at a given loop order the amplitude can only be a linear combination of very few functions.

Three-mass triangle integrals

- Consider a a three-point function without internal masses.
- The kinemtics is described by the two variables

$$
z \bar{z}=u=\frac{p_{1}^{2}}{p_{3}^{2}} \quad(1-z)(1-\bar{z})=v=\frac{p_{2}^{2}}{p_{3}^{2}}
$$

- It can be shown recursively, by combining the Hopf algebra with Cutkowski's rules, that the such three-point functions must be single-valued functions in the complex variable z.

Three-mass triangle integrals

- Consider a a three-point function without internal masses.
- The kinemtics is described by the two variables

$$
z \bar{z}=u=\frac{p_{1}^{2}}{p_{3}^{2}} \quad(1-z)(1-\bar{z})=v=\frac{p_{2}^{2}}{p_{3}^{2}}
$$

- It can be shown recursively, by combining the Hopf algebra with Cutkowski's rules, that the such three-point functions must be single-valued functions in the complex variable z.
- Adding some symemtry considerations, there are only very functions of this type up to weight 4 (= 2 loops)!

weight	+	-
1	$\ln \|z\|^{2}, \ln \|1-z\|^{2}$	-
2	ζ_{2}	$\mathcal{P}_{2}(z)$
3	$\zeta_{3}, \mathcal{P}_{3}(z), \mathcal{P}_{3}(1-z)$	$\mathcal{Q}_{3}(z)$
4	$\mathcal{Q}_{4}^{+}(z), \mathcal{Q}_{4}^{+}(1-z)$	$\mathcal{P}_{4}(z), \mathcal{P}_{4}(1-z), \mathcal{P}_{4}(1-1 / z), \mathcal{Q}_{4}^{-}(z)$

Three-mass triangle integrals

- As an example, the one-loop integral reads in this basis:

$$
\begin{aligned}
T_{1}\left(p_{1}^{2}, p_{2}^{2}, p_{3}^{2} ; \epsilon\right)= & -2 c_{\Gamma} \frac{\Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)^{2}}\left(-p_{3}^{2}\right)^{-1-\epsilon} \frac{u^{-\epsilon} v^{-\epsilon}}{z-\bar{z}}\left\{\mathcal{P}_{2}(z)+2 \epsilon \mathcal{Q}_{3}(z)\right. \\
& \left.+\epsilon^{2}\left[\left(\frac{1}{6} \ln u \ln v-\zeta_{2}\right) \mathcal{P}_{2}(z)+2 \mathcal{Q}_{4}^{-}(z)\right]+\mathcal{O}\left(\epsilon^{3}\right)\right\} .
\end{aligned}
$$

- Similar results at two-loops.

Three-mass triangle integrals

- As an example, the one-loop integral reads in this basis:

$$
\begin{aligned}
T_{1}\left(p_{1}^{2}, p_{2}^{2}, p_{3}^{2} ; \epsilon\right)= & -2 c_{\Gamma} \frac{\Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)^{2}}\left(-p_{3}^{2}\right)^{-1-\epsilon} \frac{u^{-\epsilon} v^{-\epsilon}}{z-\bar{z}}\left\{\mathcal{P}_{2}(z)+2 \epsilon \mathcal{Q}_{3}(z)\right. \\
& \left.+\epsilon^{2}\left[\left(\frac{1}{6} \ln u \ln v-\zeta_{2}\right) \mathcal{P}_{2}(z)+2 \mathcal{Q}_{4}^{-}(z)\right]+\mathcal{O}\left(\epsilon^{3}\right)\right\} .
\end{aligned}
$$

- Similar results at two-loops.
- Note that these integrals were known in principle:
- by Davydychev and Ussyukina: in terms of classical polylogarithms, but not expanded high enough in epsilon.
\Rightarrow by Birthwright, Glover and Marquard: in terms of complicated iterated integrals involving square roots.
- In our representation: very compact, all symmetries manifest, analytic continuation almost trivial.

More single-valued functions

- Certain generalized multi-loop dual conformal ladder integrals can be expressed in terms of the same type of functions:
\Rightarrow write down an ansatz in terms of these functions, and inject it into some differential equation.
\Rightarrow generates an infinite number of analytic results for multiloop 4-point integrals.

More single-valued functions

- Certain generalized multi-loop dual conformal ladder integrals can be expressed in terms of the same type of functions:
\Rightarrow write down an ansatz in terms of these functions, and inject it into some differential equation.
\Rightarrow generates an infinite number of analytic results for multiloop 4-point integrals.
- Similar approach can be used for the six-point amplitude in $\mathrm{N}=4$ SYM in the Regge limit:
\Rightarrow write down an ansatz in terms of these functions, and match the Taylor expansion of the ansatz to some MellinBarnes integral.
\Rightarrow generates explicit results for the 6-point amplitude in $\mathrm{N}=4$ SYM up to ten loops in this limit!

Conclusion \& open questions

- Understanding the mathematics underlying the functions that enter Feynman integrals opens new ways to deal with loop amplitudes:
\Rightarrow Simplify complicated expressions.
\Rightarrow Determine space of functions a priori and inject into differential equations or match asymptotic expansions.

Conclusion $\&$ open questions

- Understanding the mathematics underlying the functions that enter Feynman integrals opens new ways to deal with loop amplitudes:
\Rightarrow Simplify complicated expressions.
\Rightarrow Determine space of functions a priori and inject into differential equations or match asymptotic expansions.
- Open questions:
\Rightarrow So far arguments of polylogarithms need to be rational functions.
\Rightarrow The case of elliptic functions is not covered.
\Rightarrow Can we define a coproduct directly on Feynman integrals that matches the coproduct on multiple polylogarithms?

Example: inversion relations

- Indeed, the Hopf algebra fixes the inversion relations recursively.

Example: inversion relations

- Indeed, the Hopf algebra fixes the inversion relations recursively.
- Weight 1: trivial
$\mathrm{Li}_{1}\left(\frac{1}{x}\right)=-\ln \left(1-\frac{1}{x}\right)=-\ln (1-x)+\ln (-x)=-\ln (1-x)+\ln x-i \pi$ with $x=x+i \varepsilon$.

Example: inversion relations

- Weight 2:

$$
\begin{aligned}
\Delta_{1,1}\left[\operatorname{Li}_{2}\left(\frac{1}{x}\right)\right] & =-\ln \left(1-\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \\
& =\ln (1-x) \otimes \ln x-\ln x \otimes \ln x+i \pi \otimes \ln x \\
& =\Delta_{1,1}\left[-\operatorname{Li}_{2}(x)-\frac{1}{2} \ln ^{2} x+i \pi \ln x\right] .
\end{aligned}
$$

Example: inversion relations

- Weight 2:

$$
\begin{aligned}
\Delta_{1,1}\left[\operatorname{Li}_{2}\left(\frac{1}{x}\right)\right] & =-\ln \left(1-\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \\
& =\ln (1-x) \otimes \ln x-\ln x \otimes \ln x+i \pi \otimes \ln x \\
& =\Delta_{1,1}\left[-\operatorname{Li}_{2}(x)-\frac{1}{2} \ln ^{2} x+i \pi \ln x\right] .
\end{aligned}
$$

- This fixes the inversion relation, up to some zeta value.
\Rightarrow At each step we loose a zeta value, they are indecomposable ('primitive').

$$
\operatorname{Li}_{2}\left(\frac{1}{x}\right)=-\operatorname{Li}_{2}(x)-\frac{1}{2} \ln ^{2} x+i \pi \ln x+c \pi^{2}
$$

and $c=1 / 3$ from $x=1$.

Example: inversion relations

- Weight 3:

$$
\begin{aligned}
\Delta_{1,1,1}\left[\operatorname{Li}_{3}\left(\frac{1}{x}\right)\right] & =-\ln \left(1-\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \\
& =-\ln (1-x) \otimes \ln x \otimes \ln x+\ln x \otimes \ln x \otimes \ln x-i \pi \otimes \ln x \otimes \ln x \\
& =\Delta_{1,1,1}\left[\operatorname{Li}_{3}(x)+\frac{1}{6} \ln ^{3} x-\frac{i \pi}{2} \ln ^{2} x\right] .
\end{aligned}
$$

Example: inversion relations

- Weight 3:

$$
\begin{aligned}
\Delta_{1,1,1}\left[\operatorname{Li}_{3}\left(\frac{1}{x}\right)\right] & =-\ln \left(1-\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \otimes \ln \left(\frac{1}{x}\right) \\
& =-\ln (1-x) \otimes \ln x \otimes \ln x+\ln x \otimes \ln x \otimes \ln x-i \pi \otimes \ln x \otimes \ln x \\
& =\Delta_{1,1,1}\left[\operatorname{Li}_{3}(x)+\frac{1}{6} \ln ^{3} x-\frac{i \pi}{2} \ln ^{2} x\right] .
\end{aligned}
$$

- At this stage however we have lost everything proportional to zeta values.
\Rightarrow Go one step up!

$$
\begin{aligned}
\Delta_{2,1} & {\left[\operatorname{Li}_{3}\left(\frac{1}{x}\right)-\left(\operatorname{Li}_{3}(x)+\frac{1}{6} \ln ^{3} x-\frac{i \pi}{2} \ln ^{2} x\right)\right] } \\
& =\left[-\operatorname{Li}_{2}\left(\frac{1}{x}\right)-\mathrm{Li}_{2}(x)-\frac{1}{2} \ln ^{2} x-i \pi \ln x\right] \otimes \ln x \\
& =-\frac{1}{3} \pi^{2} \otimes \ln x=\Delta_{2,1}\left(-\frac{\pi^{2}}{3} \ln x\right)
\end{aligned}
$$

Example: inversion relations

- Finally:
and $\alpha=\beta=0$ from $x=1$.
- We could now go on like this and derive the inversion relations for arbitrary weight.

Example: inversion relations

- Finally:

$$
\begin{aligned}
& \operatorname{Li}_{3}\left(\frac{1}{x}\right)=\operatorname{Li}_{3}(x)+\frac{1}{6} \ln ^{3} x-\frac{i \pi}{2} \ln ^{2} x-\frac{\pi^{2}}{3} \ln x+\alpha \zeta_{3}+\beta i \pi^{3} \\
& \text { and } \alpha=\beta=0 \text { from } x=1 .
\end{aligned}
$$

- We could now go on like this and derive the inversion relations for arbitrary weight.
\Rightarrow No painful manipulation of the integral representation at any step!

Example: inversion relations

$$
\begin{aligned}
& G(-z,-z, 1-z, 1-z ; y)=\operatorname{Li}_{3}(1-x) \log (1-z)+\operatorname{Li}_{3}(1-z) \log (1-x)+\operatorname{Li}_{4}\left(1-\frac{1}{x}\right)+\operatorname{Li}_{4}(1-x) \\
& -\operatorname{Li}_{4}(x)-\operatorname{Li}_{3}(1-x) \log (x)+\mathrm{Li}_{4}\left(1-\frac{1}{z}\right)+\operatorname{Li}_{4}(1-z)-\operatorname{Li}_{4}(z)-\operatorname{Li}_{3}(1-z) \log (z)+\frac{1}{4} \log ^{2}(1-x) \\
& \log ^{2}(1-z)+\pi^{2}\left(-\frac{1}{6} \log (1-x) \log (1-z)+\frac{\log ^{2}(x)}{12}+\frac{\log ^{2}(z)}{12}\right)+\zeta(3) \log (x)-\zeta(3) \log (1-x)+ \\
& \frac{\log ^{4}(x)}{24}-\frac{1}{6} \log (1-x) \log ^{3}(x)-\zeta(3) \log (1-z)+\zeta(3) \log (z)+\frac{\log ^{4}(z)}{24}-\frac{1}{6} \log (1-z) \log ^{3}(z)+\frac{7 \pi^{4}}{360} \\
& \text { with } \mathrm{x}+\mathrm{y}+\mathrm{Z}=1,0<\mathrm{x}, \mathrm{y}, \mathrm{z}<1
\end{aligned}
$$

