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Scattering amplitudes in QFT

• State of the art:
➡ Tree-level: essentially solved (except multi-leg amplitudes).

✓ Integral basis (boxes, triangles, bubbles)
✓ Essentially solved

๏ Two-loop amplitudes in general unknown.
๏ No two-loop integral basis known.

➡ One loop: 

➡ Two loops: 

• LHC physics is dominated by QCD.

[See talks by Gluza and Malamos]



• Why are multi-loop computations so difficult..?

Multi-loop computations

• Quantities are divergent:

➡ UV & IR divergences.

• Two-loop integrals are generically polylogarithms of weight 
4 in many external physical parameters.
➡ multiple polylogarithms.
➡ need to evaluate these functions numerically in a fast and 

efficient way, including all the branch cuts, etc.• In other words, polylogarithms and their generalizations 
are everywhere!
➡ Need to understand these functions!

• Integration-by-parts identities allow to reduce the problem 
to the computation of a minimal set of master integrals.
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• The final goal is to obtain an expression of the loop 
integrals in terms of 
➡ Transcendental numbers: mutliple zeta values, log 2, etc.
➡ Transcendental functions: a whole zoo was discovered

The life-cycle of a loop computation

★ (Classical) polylogarithms.
★ Harmonic polylogarithms.

★ 2d harmonic polylogarithms.

★ All these are just special classes of multiple polylogarithms.

★ Elliptic functions.

• In this talk: will concentrate exclusively on polylogarithms.

★ Cyclotomic harmonic polylogarithms.



• Recursive definition of multiple polylogarithms:

Lin(z) =
Z z

0

dt

t
Lin�1(t)G(a1, . . . , an; z) =

Z z
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• Recursive definition of multiple polylogarithms:

Lin(z) =
Z z

0

dt

t
Lin�1(t)

• All the special functions physicists defined are just special 
cases thereof:

G(a1, . . . , an; z) =
Z z

0

dt

t� a1
G(a2, . . . , an; t)

➡ (Classical) polylogarithms: Lin(z) = �G(0, . . . , 0, 1; z)

➡ Harmonic polylogarithms: ai 2 {�1, 0, 1}
➡ 2d harmonic polylogarithms: e.g., ai 2 {0, 1, a}

➡ Cyclotomic harmonic polylogarithms: roots of unity.

The life-cycle of a loop computation



The life-cycle of a loop computation

• Even if an amplitude is simple, it might be that our 
approach to the problem leads to a difficult answer.

➡ The simplicity of the answer might be hidden behind a 
swath of functional equations.

• In other words we need to ‘control’ the functional equations 
among polylogarithms.

�Li2(z)� ln z ln(1� z) = Li2(1� z)� ⇡2

6

• The polylogarithms satisfy various complicated functional 
equations.
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• Polylogarithms have been introduced and studied several 
centuries ago by Euler, Nielsen, Poincaré,...

Number theory and Loop integrals

➡ ‘Mathematics of the 19th century’.

• No! Over the last 20 years polylogarithms were a very 
active field of research in pure mathematics.

• Mathematicians have discovered very far reaching 
algebraic structures underlying polylogarithms. 

• In particular, mathematicians showed that multiple 
polylogarithms form a Hopf algebra. [Goncharov]

• Consequence: All functional equations are pure 
combinatorics! 
➡ You do not even need to know the integral in order to 

derive the relations among them!
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Hopf algebras
• Algebra: Vector space with an operation that allows one 

to ‘fuse’ two elements into one (multiplication).

• Coalgebra: Vector space with an operation that allows 
one to  break two elements apart (comultiplication).

• Hopf algebra: Vector space with both multiplication and 
comultiplication, i.e., one can ‘fuse’ and ‘break apart’ in a 
consistent manner.

• Goncharov showed that mutliple polylogarithms form a 
Hopf algebra.

The fact that Eq. (5.1) defines a genuine coproduct, i.e., that ∆ is coassociative, Eq. (4.24),

and an algebra homomorphism, Eq. (4.31), is a non-trivial statement. In addition, Eq. (5.1)

preserves the weight, i.e., the sum of the weights in each term is equal to n. We stress that

Eq. (5.1) is strictly speaking only valid when all the ai’s are generic. The definition of the

coproduct in the non-generic case involves several technical steps that do not add anything

new to the discussion in the main text of the paper, and we refer to Appendix A or to

Refs. [58, 63] for the definition of the coproduct in the non-generic case. Let us quote here

only the explicit formulas for the coproducts for the ordinary logarithm and the classical

polylogarithm,

∆(ln z) = 1 ⊗ ln z + ln z ⊗ 1 ,

∆(Lin(z)) = 1 ⊗ Lin(z) + Lin(z) ⊗ 1 +
n−1
∑

k=1

Lin−k(z) ⊗
lnk z

k!
.

(5.2)

Eq. (5.2) is enough to compute the coproduct of any expression made out of ordinary

logarithms and classical polylogarithms only. Indeed, we can use Eq. (4.31) to obtain for

example,

∆(ln x ln y) = ∆(ln x)∆(ln y) = [1 ⊗ ln x + ln x ⊗ 1] [1 ⊗ ln y + ln y ⊗ 1]

= 1 ⊗ (ln x ln y) + ln x ⊗ ln y + ln y ⊗ ln x + (ln x ln y) ⊗ 1 .
(5.3)

Furthermore, it is easy to prove the following result,

∆(lnn z) =
n

∑

k=0

(
n

k

)

lnk z ⊗ lnn−k z . (5.4)

The coproduct can be used to simplify expressions involving polylogarithms in the

same way as the symbol. Indeed, suppose that we have a two expression Fw and Gw of

weight w that are equal (modulo functional equations). Then it is clear that also their

coproducts must be equal,

∆(Fw) = ∆(Gw) , (5.5)

and also

∆′(Fw) = ∆′(Gw) . (5.6)

It is important to note that Eq. (5.6) only involves polylogarithms of weight w′ < w. As

a consequence, it is enough to know the functional equations of lower weight in order to

check the equality. These functional equations of lower weight might themselves still be

complicated or unknown, so we have apparently not gained anything. In such a scenario

we can iterate the procedure by applying the coproduct again to one of the factors in

the tensor product, and the coassociativity of the coproduct ensures that this iteration is

unique. In this way we obtain a whole tower of expressions, which at each stage involve

only transcendental functions of lower weight,

Fw = Gw → ∆(Fw) = ∆(Gw) → (id ⊗ ∆)∆(Fw) = (id ⊗ ∆)∆(Gw) → . . . (5.7)

As an example, in the case of a function of weight four, we obtain the following identities,
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The Hopf algebra of polylogarithms
‘Li4’Too complicated to handle

Break it into pieces

‘Li3 ⌦ Li1’ ‘Li2 ⌦ Li2’ ‘Li1 ⌦ Li3’
Still too

complicated

‘Li2 ⌦ Li1 ⌦ Li1’ ‘Li1 ⌦ Li2 ⌦ Li1’ ‘Li1 ⌦ Li1 ⌦ Li2’

‘Li1 ⌦ Li1 ⌦ Li1 ⌦ Li1’

Li1(z) = � log(1� z)

log(a · b) = log a + log b

• At the end of this procedure, we have broken everything 
into little pieces (logarithms = symbol), for which all 
identities are known.

• We then need to reassemble the pieces to find the 
simplified expression (This is the most difficult step!)

• At each step information is lost, but in a controlled way:
➡ Can be recovered by going back up one step at the time.
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• Understanding the mathematical structure underlying 
multiple polylogarithms opens new possibilities for the 
computation of Feynman integrals and scattering 
amplitudes.

Hopf algebras and Loop integrals

• Substantial simplifications of complicated expressions:
➡ Six-point MHV amplitude in N=4 Super Yang-Mills.
➡ Two-loop helicity amplitudes for H + 3g.

• Determine space of functions a priori:
➡ Generalized ladder integrals.
➡ N=4 SYM six-point amplitude in the Regge limit.
➡ Two-loop three mass triangle integrals.



6-point amplitude in N=4 SYM
• Evaluating the individual diagrams one arrives at a very 

complicated combination of multiple polylogarithms (17 
pages),
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the expression should provide encouragement and guidance as we seek deeper understanding

of SYM at loop level.

We present our new expression for R(2)
6 in the next section and then describe the algorithm

by which it was obtained.
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metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.
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6
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metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m("4−m(x+) + "4−m(x−)) (4)

2

and

!n(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantity

J =
3
∑

i=1

(!1(x
+
i )− !1(x

−
i )). (6)

Note that in the Euclidean region where all ui > 0, the
x+
i never enter the lower half-plane and the x−

i never
enter the upper half-plane. The expression (3) is valid
in the Euclidean region with the understanding that the
branch cuts of Lin(x

+
i ) and Lin(1/x

−
i ) are taken to lie

below the real axis while the branch cuts of Lin(x
−
i ) and

Lin(1/x
+
i ) are taken to lie above the real axis. (The

quantities x+
i x

−
i appearing as arguments of the logs are

always positive.) In writing (3) extreme care has neces-
sarily been taken to ensure the proper analytic structure.
For example one can easily check that J naively simpli-
fies to 1

2 log(x
−/x+), but this relation only holds in the

regions ∆ > 0 or u1 + u2 + u3 < 1. We caution the
reader that any attempt to use any such naive relations,
including the well-known relation between Lin(1/x) and
Lin(x), without careful consideration of the branch struc-
ture, voids our warranty on (3).
Besides its great simplicity, two notable features of (3)

which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular also outside the unit cube.

DESCRIPTION OF THE ALGORITHM

A Convenient Choice of Variables

The DDS formula is expressed in terms of the classical
polylogarithms Lik as well as a collection of considerably
more complicated multiparameter generalizations stud-
ied by one of the authors [19] and defined recursively by

G(ak, ak−1, . . . ; z) =

∫ z

0
G(ak−1, . . . ; t)

dt

t− ak
(7)

with G(z) ≡ 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.
The parameters of the various transcendental functions

which appear in the DDS formula involve not just the
cross-ratios (1), but also the more complicated combi-
nations 1 − ui, (1 − ui)/(1 − ui − uj), ui + uj , u

±
jkl =

1−uj−uk+ul±
√
∆

2(1−uj)ul
, and v±jkl =

uk−ul±
√

(uk+ul)2−4ujukul

2(1−uj)uk
.

This large collection of variables is redundant in an ineffi-
cient way, with many rather complicated algebraic iden-
tities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic
relations. We choose to express the three ui by six vari-
ables zi valued in P1 (with an SL(2,C) redundancy) via

u1 =
z23z56
z25z36

, u2 =
z16z34
z14z36

, u3 =
z12z45
z14z25

, (8)

where zij = zi − zj . One virtue of these coordinates is
that ∆ becomes a perfect square, so that the u±

jkl are

rational functions of the zij . (The v±jkl completely drop
out as explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought
of as a particular simplification of momentum twistors
which is valid for the special case n = 6 via the rela-
tion 〈abcd〉 ∝ zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 =
〈1234〉〈4561〉
〈1245〉〈3461〉, x+

1 = −〈1456〉〈2356〉
〈1256〉〈3456〉, etc. (9)

The Symbol of a Transcendental Function

We define a function Tk of transcendentality degree
k as one which can be written as a linear combination
(with rational coefficients) of k-fold iterated integrals of
the form

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk, (10)

where a and b are rational numbers, Ri(t) are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by

∫ b

a

d logR1 ◦ · · · ◦ d logRn =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRn−1

)

d logRn(t). (11)

The integrals are taken along paths from a to b. When
the Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [22,
sec. 3]). The symbol of the function shown in (10) is

symbol(Tk) = R1 ⊗ · · ·⊗Rk, (12)

and this definition is extended to all functions of degree
k by linearity.
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6-point amplitude in N=4 SYM

• This was the first time the new mathematical methods were 
applied.



Higgs + 3 gluons
• Gehrmann, Jaquier, Glover and Koukoutsakis have 

recently computed the two-loop helicity amplitudes for a 
Higgs boson + 3 gluons
➡ in the decay region

H ! g+g+g+ H ! g+g+g�

➡ and the scattering region

• Kinematics (in the decay region):

and so c6 = 1
288 . Finally we arrive at

H

(

0, 1, 0, 0, 1;
1

2

)

= 3Li5

(
1

2

)

+ 3 ln 2Li4

(
1

2

)

+
11

120
ln5 2 −

5

72
π2 ln3 2

+
7

8
ζ3 ln2 2 +

1

288
π4 ln 2 −

7

48
π2 ζ3 + c8 ζ5 .

(6.32)

As expected, the coproduct allowed us to fix all the coefficients except for c8. Using

numerics, we arrive at

H

(

0, 1, 0, 0, 1;
1

2

)

− T = −c8 ζ5 − 1.3123616901033275 . . . = −c8 ζ5 −
81

64
ζ5 , (6.33)

and thus c8 = −81
64 .

7. Amplitudes for H + 3 gluons

In this section we apply the coproduct to a physical problem, namely the two-loop helicity

amplitudes for a Higgs boson plus three gluons in the large top mass limit. In this limit

the coupling of a Higgs boson to gluons is described by an effective operator of dimension

five,

Leff = −
λ

4
H Ga

µν Gµν
a . (7.1)

The two-loop corrections to the helicity amplitudes for a Higgs boson plus three gluons were

computed in Refs. [60, 61], where it was expressed as a complicated combination of two-

dimensional harmonic polylogarithms. In Ref. [53] it was shown that, after subtracting the

square of the one-loop amplitude, the symbol the leading color maximally transcendental

part of the two-loop helicity amplitudes is equal to the symbol of the two-loop form factor

of three gluons in planar N = 4 Super Yang-Mills. The latter can be expressed in a very

compact form involving only classical polylogarithms up to weight four [53]. This suggests

that the two-loop corrections to the helicity amplitudes for a Higgs boson plus three gluons

can be written in a much simpler form without any multiple polylogarithms. However, as

the symbol does not fix terms proportional to ζ values, the symbol alone is insufficient to

determine such a simplified form in an easy way. In the following we apply our coproduct

approach to rewrite the results of Refs. [60, 61] in a compact form, obtaining in this way

compact analytical expressions for all helicity amplitudes for a Higgs boson plus three

gluons, for both the decay (H → ggg) and the scattering (gg → Hg) regions.

7.1 The decay region

We start by investigating the decay region, i.e., the two-loop corrections to the helicity

amplitudes for H → ggg. The kinematics is described by three dimensionless ratios,

x1 =
s12

m2
H

, x2 =
s23

m2
H

, x3 =
s31

m2
H

, (7.2)

where mH denotes the mass of the Higgs boson and sij = 2pipj, with pi the momenta of the

external gluons. These kinematic variables are not independent, but they are constraint

by

0 < xi < 1 and x1 + x2 + x3 = 1 . (7.3)
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Higgs + 3 gluons
• The result was expressed in terms of complicated 

combinations of ‘2d harmonic polylogarithms’.
➡ Symmetries completely lost (e.g. Bose symmetry).
➡ Very long and complicated.
➡ Numerical evaluation of complicated special functions.
➡ Analytic continuation from decay to scattering region 

very complicated.



Higgs + 3 gluons
• The result was expressed in terms of complicated 

combinations of ‘2d harmonic polylogarithms’.
➡ Symmetries completely lost (e.g. Bose symmetry).
➡ Very long and complicated.
➡ Numerical evaluation of complicated special functions.
➡ Analytic continuation from decay to scattering region 

very complicated.

• Brandhuber, Gang and Travaglini observed that the symbol 
of the leading color weight 4 part (after subtracting the 
one-loop squared) is equal to the symbol of the form factor 
of 3 gluons in N=4 Super Yang-Mills.
➡ A simpler representation of the Higgs amplitudes in 

terms of classical polylogarithms only should exist.



Higgs + 3 gluons

where Λn(z) denotes Kummer’s function,

Λn(z) =

∫ z

0
dt

lnn−1 |t|
1 + t

= (n − 1)!
n−1
∑

k=0

(−1)n−k

k!
lnk |z|Lin−k(z) . (7.14)

This result was already obtained in Ref. [53]. However, Eq. (7.12) only holds at the level

of the symbol, and it would thus be premature to conclude that the weight four part of

A
(2)
α is equal (at the level of the function) to R(2)

3 . Indeed, acting with ∆2,1,1, we obtain

∆2,1,1

[

A
(2)
α, weight 4 −R(2)

3

]

= −
1

6
π2 ⊗ ∆1,1

[

A(1)
α

]

= ∆2,1,1

[

−
π2

6
A(1)

α

]

. (7.15)

Continuing this way, we can easily determine the coefficient of ζ3,

∆3,1

[

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α

]

= −
1

4
ζ3 ⊗ B(1)

α = ∆3,1

[

−
1

4
ζ3 B(1)

α

]

. (7.16)

Finally, we determine the coefficient of π4 by evaluating the function at a single point in

phase space,

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α +
1

4
ζ3 B(1)

α = −0.03382260105347 . . . = −
π4

2880
. (7.17)

Repeating the same steps for all other contributions to Eq. (7.7), we arrive at the following

expressions for the different color structures contributing to the two-loop amplitude α(2),

A
(2)
α = R(2)

3 −
π2

6
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α −
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α −
π4

2880
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(7.18)
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Continuing this way, we can easily determine the coefficient of ζ3,
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Repeating the same steps for all other contributions to Eq. (7.7), we arrive at the following
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where Pi(x, y, z) = Pi(x, z, y) are homogeneous polynomials in three variables,
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• Originally, the expressions filled up more than 6 pages!

• Bose symmetry is now completely manifest.

• Only simple functions (classical polylogarithms) with 
simple arguments.
➡ easy numerical evaluation.

• Similar results can be obtained for                          .H ! g+g+g�
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Single-valued polylogarithms
• In some cases it is possible to determine the space of 

functions a priori from general considerations.

• In particular, in the case of
➡ generalized ladder integrals,
➡ the six-point N=4 SYM amplitude in the Regge limit,
➡ three-mass triangle integrals,
one can show on general grounds that the space of 
functions is the (almost) the same, and corresponds to 
polylogarithms in one complex variable z without any 
branch cuts in the complex z plane (single-valued).

• These functions can be classified [Brown], and it turns out 
that at a given loop order the amplitude can only be a linear 
combination of very few functions.



Three-mass triangle integrals
• Consider a a three-point function without internal masses.

• The kinemtics is described by the two variables

• It can be shown recursively, by combining the Hopf 
algebra with Cutkowski’s rules, that the such three-point 
functions must be single-valued functions in the complex 
variable z.

one can identify a priori a basis for a space of polylogarithmic functions through which all

of these integrals can be expressed. This space of functions is composed of single-valued

functions of a single complex variable z (and its complex conjugate z̄), and encompasses

in particular the famous Bloch-Wigner dilogarithm and the single-valued versions of the

harmonic polylogarithms introduced in ref. [30]. The latter functions were recently used

to derive analytic results for the six-point amplitude in N = 4 Super Yang-Mills in the

multi-Regge limit [31] and for certain generalized ladder integrals [32] for a high number of

loops. In terms of this basis of functions, all our results are characterized by very compact

analytic expressions that make all the symmetries and analytic continuations manifest.

In particular, we observe that one of the two-loop master integrals can be expressed, at

least up to transcendental weight four, as a combination of the one-loop triangle and the

two-loop ladder integral. This extends an observation made in ref. [28] to one order higher

in the ε expansion.

This paper is organized as follows: In section 2 we define our notations and conventions

and discuss some general properties of three-mass triangle integrals. In particular we argue

that, in a specific kinematic region, they can naturally be expressed through a certain class

of single-valued functions of a single complex variable z and its complex conjugate z̄, and

in section 3 we give a short review of these functions up to weight four. In section 4 we

present our results in the kinematic region where the functions are single-valued, and in

section 5 we perform the analytic continuation of our results to other kinematic regions.

We include appendices that contain details about the basis of single-valued functions.

2. Triangle integrals with three external masses

We start by discussing the kinematics of three-point functions where all three external legs

are off shell and all internal propagator are massless. If T (!)(p1, p2, p3; ε) denotes a generic

"-loop integral of this type in D = 4− 2ε dimensions with external momenta pi, i = 1, 2, 3,

then Lorentz invariance and momentum conservation imply that the result can only depend

on the virtualities p2i "= 0. In dimensional regularization we can therefore write, without

loss of generality,

T (!)(p1, p2, p3; ε) = c!Γ (−p
2
3)

n−!ε T (!)(u, v; ε) , (2.1)

for some integer n and where we defined

u =
p21
p23

and v =
p22
p23

. (2.2)

In eq. (2.1) we pulled out the usual loop factor

cΓ = eγEεΓ(1 + ε)Γ(1 − ε)2

Γ(1− 2ε)
, (2.3)

where γE = −Γ′(1) is the Euler-Mascheroni constant. In the following, and unless stated

otherwise, we will always work in the Euclidean region where p2i < 0, i = 1, 2, 3, and thus

u, v > 0. All the results we present in this paper are real in the Euclidean region. We

– 2 –
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Figure 1: The master integrals for the two-loop three-mass triangle integrals.

note that our results will be equally valid in the physical region p2i > 0. This region is

phenomenologically relevant for two reasons. Firstly, it describes the decay of a heavy

particle of mass p23 into two lighter particles1. Secondly, three-mass triangle integrals in

this region appear in the production amplitude for a pair of weak gauge bosons at higher

orders in perturbation theory. The region p2i > 0 is related to the Euclidean region via the

analytic continuation

−(p2k + iε)→ e−iπ
∣∣p2k
∣∣ . (2.4)

It is then easy to see that the phase factors cancel out in the ratios (2.2) so that the analytic

continuation of eq. (2.1) from the Euclidean to the physical region p2i > 0 is trivial,

T (")(p1, p2, p3; ε)→ (−1)n e−iπ"ε c"Γ
∣∣p23
∣∣n−"ε

T (")(u, v; ε) . (2.5)

The main focus of this paper are three-mass triangles that appear in two-loop compu-

tations in dimensional regularization. In ref. [26] it was shown that all two-loop three-mass

triangles can be reduced to a limited set of master integrals (see fig. 1). The reduction to

master integrals involves also two-loop two-point functions which can be evaluated to all

orders in ε in terms of Γ functions. We will therefore not consider the two-point master

integrals any further and will concentrate exclusively on the three-point functions.

As we will see in the next sections, the kinematics of a genuine three-point function is

most conveniently parametrized in terms of two variables z and z̄,

z z̄ = u and (1− z) (1 − z̄) = v , (2.6)

or equivalently

z =
1

2

(
1 + u− v +

√
λ(1, u, v)

)
and z̄ =

1

2

(
1 + u− v −

√
λ(1, u, v)

)
, (2.7)

where λ denotes the Källen function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc . (2.8)

The appearance of the Källen function in eq. (2.7) divides the (u, v) plane into four different

kinematical regions, shown in fig. 2. In the regions II, III and IV the Källen function

1Without loss of generality we may assume that p23 is the largest invariant.
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"-loop integral of this type in D = 4− 2ε dimensions with external momenta pi, i = 1, 2, 3,

then Lorentz invariance and momentum conservation imply that the result can only depend

on the virtualities p2i "= 0. In dimensional regularization we can therefore write, without

loss of generality,

T (!)(p1, p2, p3; ε) = c!Γ (−p
2
3)

n−!ε T (!)(u, v; ε) , (2.1)

for some integer n and where we defined

u =
p21
p23

and v =
p22
p23

. (2.2)

In eq. (2.1) we pulled out the usual loop factor

cΓ = eγEεΓ(1 + ε)Γ(1 − ε)2

Γ(1− 2ε)
, (2.3)

where γE = −Γ′(1) is the Euler-Mascheroni constant. In the following, and unless stated

otherwise, we will always work in the Euclidean region where p2i < 0, i = 1, 2, 3, and thus

u, v > 0. All the results we present in this paper are real in the Euclidean region. We
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note that our results will be equally valid in the physical region p2i > 0. This region is

phenomenologically relevant for two reasons. Firstly, it describes the decay of a heavy

particle of mass p23 into two lighter particles1. Secondly, three-mass triangle integrals in

this region appear in the production amplitude for a pair of weak gauge bosons at higher

orders in perturbation theory. The region p2i > 0 is related to the Euclidean region via the

analytic continuation

−(p2k + iε)→ e−iπ
∣∣p2k
∣∣ . (2.4)

It is then easy to see that the phase factors cancel out in the ratios (2.2) so that the analytic

continuation of eq. (2.1) from the Euclidean to the physical region p2i > 0 is trivial,

T (")(p1, p2, p3; ε)→ (−1)n e−iπ"ε c"Γ
∣∣p23
∣∣n−"ε

T (")(u, v; ε) . (2.5)

The main focus of this paper are three-mass triangles that appear in two-loop compu-

tations in dimensional regularization. In ref. [26] it was shown that all two-loop three-mass

triangles can be reduced to a limited set of master integrals (see fig. 1). The reduction to

master integrals involves also two-loop two-point functions which can be evaluated to all

orders in ε in terms of Γ functions. We will therefore not consider the two-point master

integrals any further and will concentrate exclusively on the three-point functions.

As we will see in the next sections, the kinematics of a genuine three-point function is

most conveniently parametrized in terms of two variables z and z̄,

z z̄ = u and (1− z) (1 − z̄) = v , (2.6)

or equivalently

z =
1

2

(
1 + u− v +

√
λ(1, u, v)

)
and z̄ =

1

2

(
1 + u− v −

√
λ(1, u, v)

)
, (2.7)

where λ denotes the Källen function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc . (2.8)

The appearance of the Källen function in eq. (2.7) divides the (u, v) plane into four different

kinematical regions, shown in fig. 2. In the regions II, III and IV the Källen function

1Without loss of generality we may assume that p23 is the largest invariant.
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one can identify a priori a basis for a space of polylogarithmic functions through which all
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section 5 we perform the analytic continuation of our results to other kinematic regions.

We include appendices that contain details about the basis of single-valued functions.
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where γE = −Γ′(1) is the Euler-Mascheroni constant. In the following, and unless stated
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u, v > 0. All the results we present in this paper are real in the Euclidean region. We
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note that our results will be equally valid in the physical region p2i > 0. This region is
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particle of mass p23 into two lighter particles1. Secondly, three-mass triangle integrals in

this region appear in the production amplitude for a pair of weak gauge bosons at higher

orders in perturbation theory. The region p2i > 0 is related to the Euclidean region via the

analytic continuation

−(p2k + iε)→ e−iπ
∣∣p2k
∣∣ . (2.4)

It is then easy to see that the phase factors cancel out in the ratios (2.2) so that the analytic

continuation of eq. (2.1) from the Euclidean to the physical region p2i > 0 is trivial,

T (")(p1, p2, p3; ε)→ (−1)n e−iπ"ε c"Γ
∣∣p23
∣∣n−"ε

T (")(u, v; ε) . (2.5)

The main focus of this paper are three-mass triangles that appear in two-loop compu-

tations in dimensional regularization. In ref. [26] it was shown that all two-loop three-mass

triangles can be reduced to a limited set of master integrals (see fig. 1). The reduction to

master integrals involves also two-loop two-point functions which can be evaluated to all

orders in ε in terms of Γ functions. We will therefore not consider the two-point master

integrals any further and will concentrate exclusively on the three-point functions.

As we will see in the next sections, the kinematics of a genuine three-point function is

most conveniently parametrized in terms of two variables z and z̄,

z z̄ = u and (1− z) (1 − z̄) = v , (2.6)

or equivalently

z =
1

2

(
1 + u− v +

√
λ(1, u, v)

)
and z̄ =

1

2

(
1 + u− v −

√
λ(1, u, v)

)
, (2.7)

where λ denotes the Källen function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc . (2.8)

The appearance of the Källen function in eq. (2.7) divides the (u, v) plane into four different

kinematical regions, shown in fig. 2. In the regions II, III and IV the Källen function

1Without loss of generality we may assume that p23 is the largest invariant.
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• Adding some symemtry considerations, there are only very 
functions of this type up to weight 4 (= 2 loops)!

weight + -

1 ln |z|2, ln |1− z|2 –

2 ζ2 P2(z)

3 ζ3,P3(z),P3(1− z) Q3(z)

4 Q+
4 (z),Q

+
4 (1− z) P4(z),P4(1− z),P4(1− 1/z),Q−

4 (z)

Table 1: Indecomposables basis elements up to weight four which can appear in the ε of three
mass triangle integrals.

of weight three besides single-valued HPLs is

Q3(z) =
1

2

[
G

(
0,

1

z̄
,
1

z
, 1

)
−G

(
0,

1

z
,
1

z̄
, 1

)]
+

1

4
ln |z|2

[
G

(
1

z
,
1

z̄
, 1

)
−G

(
1

z̄
,
1

z
, 1

)]

+
1

2

[
Li3(1− z)− Li3(1− z̄)

]
+ Li3(z) − Li3(z̄) +

1

4

[
Li2(z) + Li2(z̄)

]
ln

1− z

1− z̄

+
1

4

[
Li2(z)− Li2(z̄)

]
ln |1− z|2 +

1

16
ln

z

z̄
ln2

1− z

1− z̄
+

1

8
ln2 |z|2 ln

1− z

1− z̄

+
1

4
ln |z|2 ln |1− z|2 ln

1− z

1− z̄
+

1

16
ln2 |1− z|2 ln

z

z̄
−

π2

12
ln

1− z

1− z̄
.

(3.7)

Similar results for the new basis functions of weight four can be found in appendix A. The

main difference between the new basis functions and the single-valued HPLs is that the new

functions cannot be written in a factorized form (3.6), but they involve genuine multiple

polylogarithms in (z, z̄). The proof thatQ3(z) is indeed single-valued in the complex z plane

follows from the construction of appendix A. We note that, as every multiple polylogarithm

of weight at most three can be expressed through classical polylogarithms only, we could

derive an expression for Q3(z) that does not involve any multiple polylogarithm. The

result would be a combination of classical polylogarithms which individually have a very

complicated branch cut structure, and the different cuts conspire such that Q3(z) is single-

valued. We therefore prefer to present Q3(z) in the form (3.7). Furthermore note that, just

like the singe-valued analogues of the classical polylogarithms (3.2), Q3(z) has a definite

parity under complex conjugation, z ↔ z̄. More generally, we can choose all the basis

elements as eigenstates of the action of the Z2 symmetry group corresponding to complex

conjugation. The indecomposable basis elements up to weight four with given parity under

complex conjugation are shown in tab. 1. Note that we introduce the short-hand

Pn(z) ≡

{
2Pn(z) , if n odd ,

2iPn(z) , if n even ,
(3.8)

in order to absorb the normalization factor coming from the real and imaginary part (be-

cause we will have to consider these functions as well in the region II, III, IV, where z and

z̄ are not complex conjugate to each other).

Let us conclude this section with a discussion on how the symmetries of three-mass

triangle integrals are implemented into the space of single-valued polylogarithms we just
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Three-mass triangle integrals
• As an example, the one-loop integral reads in this basis:

• Similar results at two-loops.

one odd basis element of weight two. Indeed, if we compute the symbol of eq. (4.11) we

get

S
[
I(1, 1, 1;u, v; 0)

]
=

1

z − z̄

{
(zz̄)⊗

1− z

1− z̄
−[(1−z)(1−z̄)]⊗

z

z̄

}
=

1

z − z̄
S[2P2(z)] . (4.12)

Note that we cannot add any rational multiple of ζ2 to the argument of the symbol in the

right-hand side because of the parity of the function. We thus arrive at the conclusion that

I(1, 1, 1;u, v; 0) =
2

z − z̄
P2(z) . (4.13)

Our strategy can immediately be extended to the higher-order terms in the Laurent

expansion. The only technical difficulty that arises is that the x2 integration is no longer

trivial, but the integrand now involves powers of logarithms of the denominators. For

example, the coefficient of εn is given by the integral

n∑

k=0

(−1)n−k 2k
(
n

k

)∫ ∞

0

dx2 dx3
(1 + x2 + x3) (x2 x3 + x2 u+ x3 v)

× lnk(1 + x2 + x3) ln
n−k(x2 x3 + ux2 + v x3) .

(4.14)

The logarithms can be written as multiple polylogarithms in x2,

lnk(1 + x2 + x3) ln
n−k(x2 x3 + ux2 + v x3)

=
k∑

p=0

n−k∑

q=0

(
k

p

)(
n− k

q

)
lnk−p(1 + x3) ln

n−k−q(v x3)

×G (−1− x3;x2)
p G

(
−

v x3
u+ x3

;x2

)q

.

(4.15)

The products of multiple polylogarithms can be linearized using the shuffle algebra, and we

can thus rewrite the integrand in terms of rational functions and multiple polylogarithms

in x2. If we treat x3 as a constant, this integral can be performed in exactly the same way

as the integral over x3 discussed previously.

Carrying out this procedure for the first few terms in the ε expansion, we find

T1(p
2
1, p

2
2, p

2
3; ε) = − 2cΓ

Γ(1− 2ε)

Γ(1− ε)2
(−p23)

−1−ε u
−ε v−ε

z − z̄

{

P2(z) + 2εQ3(z)

+ ε2
[(1

6
lnu ln v − ζ2

)
P2(z) + 2Q−

4 (z)
]
+O(ε3)

}

.

(4.16)

As anticipated in section 3, the result for the one-loop three-mass triangle is expressed, at

each order in ε, as a combination of the single-valued polylogarithms shown in table 1. We

stress that the functions appearing in eq. (4.16) form a basis of the space of functions in

which the mass triangles naturally take values. Thus, this expression is minimal, and there

are no further relations among these functions.

While this is not the first time that an analytic expression for the one-loop three-mass

triangle has been computed, we believe that our result is an improvement over existing
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Three-mass triangle integrals
• As an example, the one-loop integral reads in this basis:

• Similar results at two-loops.

• Note that these integrals were known in principle:
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P2(z) . (4.13)

Our strategy can immediately be extended to the higher-order terms in the Laurent
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The products of multiple polylogarithms can be linearized using the shuffle algebra, and we

can thus rewrite the integrand in terms of rational functions and multiple polylogarithms

in x2. If we treat x3 as a constant, this integral can be performed in exactly the same way

as the integral over x3 discussed previously.

Carrying out this procedure for the first few terms in the ε expansion, we find
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}
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As anticipated in section 3, the result for the one-loop three-mass triangle is expressed, at

each order in ε, as a combination of the single-valued polylogarithms shown in table 1. We

stress that the functions appearing in eq. (4.16) form a basis of the space of functions in

which the mass triangles naturally take values. Thus, this expression is minimal, and there

are no further relations among these functions.

While this is not the first time that an analytic expression for the one-loop three-mass

triangle has been computed, we believe that our result is an improvement over existing
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➡ by Davydychev and Ussyukina: in terms of classical 
polylogarithms, but not expanded high enough in epsilon.

➡ by Birthwright, Glover and Marquard: in terms of 
complicated iterated integrals involving square roots.

• In our representation: very compact, all symmetries 
manifest, analytic continuation almost trivial.

[Chavez, CD]



More single-valued functions
• Certain generalized multi-loop dual conformal ladder 

integrals can be expressed in terms of the same type of 
functions:
➡ write down an ansatz in terms of these functions, and 

inject it into some differential equation.
➡ generates an infinite number of analytic results for multi-

loop 4-point integrals. [Drummond]



More single-valued functions
• Certain generalized multi-loop dual conformal ladder 

integrals can be expressed in terms of the same type of 
functions:
➡ write down an ansatz in terms of these functions, and 

inject it into some differential equation.
➡ generates an infinite number of analytic results for multi-

loop 4-point integrals. [Drummond]

• Similar approach can be used for the six-point amplitude in 
N=4 SYM in the Regge limit:
➡ write down an ansatz in terms of these functions, and 

match the Taylor expansion of the ansatz to some Mellin- 
Barnes integral.

➡ generates explicit results for the 6-point amplitude in N=4 
SYM up to ten loops in this limit! [Dixon, CD, Pennington]



Conclusion & open questions
• Understanding the mathematics underlying the functions 

that enter Feynman integrals opens new ways to deal with 
loop amplitudes:
➡ Simplify complicated expressions.
➡ Determine space of functions a priori and inject into 

differential equations or match asymptotic expansions.



Conclusion & open questions
• Understanding the mathematics underlying the functions 

that enter Feynman integrals opens new ways to deal with 
loop amplitudes:
➡ Simplify complicated expressions.
➡ Determine space of functions a priori and inject into 

differential equations or match asymptotic expansions.

• Open questions:

➡ So far arguments of polylogarithms need to be rational 
functions.

➡ The case of elliptic functions is not covered.
➡ Can we define a coproduct directly on Feynman integrals 

that matches the coproduct on multiple polylogarithms?





Example: inversion relations
• Indeed, the Hopf algebra fixes the inversion relations 

recursively.



Example: inversion relations
• Indeed, the Hopf algebra fixes the inversion relations 

recursively.

2. the derivative identity in Eq. (5.23) reduces to Eq. (3.8) if we restrict ourselves to

the maximal iteration of the coproduct. This is obvious from Eq. (5.25).

3. similarly, the monodromy identity in Eq. (5.23) reduces to the corresponding identity

for the symbol, Eq. (3.9).

6. Examples

In this section we present some simple examples of how the coproduct can be used to

simplify expressions involving multiple polylogarithms. The examples in this section do

not provide any new results, but they are simple enough so that all the steps can be carried

out by hand. They are therefore rather meant to illustrate how to use the coproduct in

practise to perform computations.

6.1 Inversion relations

We start by considering inversion relations for classical polylogarithms. Throughout this

section we assume that x is a real positive variable to which we assign a small positive

imaginary part.

We proceed in a bootstrap and build up the inversion relations by a recursion in the

weight. For the classical polylogarithm of weight 1, the inversion relation is easy to obtain,

Li1

(
1

x

)

= − ln

(

1 −
1

x

)

= − ln(1 − x) + ln(−x) = − ln(1 − x) + lnx − iπ . (6.1)

In order to obtain the inversion relation for weight 2, we act with ∆1,1 on Li2(1/x) and

insert the inversion relation for Li1(1/x),

∆1,1

[

Li2

(
1

x

)]

= − ln

(

1 −
1

x

)

⊗ ln

(
1

x

)

= ln(1 − x) ⊗ ln x − ln x ⊗ ln x + iπ ⊗ ln x

= ∆1,1

[

− Li2(x) −
1

2
ln2 x + iπ ln x

]

.

(6.2)

Following our conjecture, we conclude that the arguments on the left and right-hand sides

are equal modulo primitive elements of weight two. We thus make the ansatz,

Li2

(
1

x

)

= −Li2(x) −
1

2
ln2 x + iπ ln x + cπ2 , (6.3)

for some rational number c. Specializing to x = 1, we immediately obtain c = 1/3, which

is indeed the correct inversion relation for Li2. We emphasize at this stage the importance

of the definition (5.15).

Moving on to weight 3, we act with ∆1,1,1 on Li3(1/x) and obtain

∆1,1,1

[

Li3

(
1

x

)]

= − ln

(

1 −
1

x

)

⊗ ln

(
1

x

)

⊗ ln

(
1

x

)

= − ln(1 − x) ⊗ ln x ⊗ ln x + ln x ⊗ ln x ⊗ ln x − iπ ⊗ lnx ⊗ lnx

= ∆1,1,1

[

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

]

.

(6.4)

– 20 –

• Weight 1: trivial

x = x + i "

with                      .



Example: inversion relations

2. the derivative identity in Eq. (5.23) reduces to Eq. (3.8) if we restrict ourselves to

the maximal iteration of the coproduct. This is obvious from Eq. (5.25).

3. similarly, the monodromy identity in Eq. (5.23) reduces to the corresponding identity

for the symbol, Eq. (3.9).

6. Examples

In this section we present some simple examples of how the coproduct can be used to

simplify expressions involving multiple polylogarithms. The examples in this section do

not provide any new results, but they are simple enough so that all the steps can be carried

out by hand. They are therefore rather meant to illustrate how to use the coproduct in

practise to perform computations.

6.1 Inversion relations

We start by considering inversion relations for classical polylogarithms. Throughout this

section we assume that x is a real positive variable to which we assign a small positive

imaginary part.

We proceed in a bootstrap and build up the inversion relations by a recursion in the

weight. For the classical polylogarithm of weight 1, the inversion relation is easy to obtain,
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1
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.

(6.2)

Following our conjecture, we conclude that the arguments on the left and right-hand sides

are equal modulo primitive elements of weight two. We thus make the ansatz,

Li2

(
1

x

)

= −Li2(x) −
1

2
ln2 x + iπ ln x + cπ2 , (6.3)

for some rational number c. Specializing to x = 1, we immediately obtain c = 1/3, which

is indeed the correct inversion relation for Li2. We emphasize at this stage the importance

of the definition (5.15).

Moving on to weight 3, we act with ∆1,1,1 on Li3(1/x) and obtain
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2. the derivative identity in Eq. (5.23) reduces to Eq. (3.8) if we restrict ourselves to

the maximal iteration of the coproduct. This is obvious from Eq. (5.25).

3. similarly, the monodromy identity in Eq. (5.23) reduces to the corresponding identity
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not provide any new results, but they are simple enough so that all the steps can be carried

out by hand. They are therefore rather meant to illustrate how to use the coproduct in
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and c = 1/3 from x=1.

➡ At each step we loose a zeta value, they are 
indecomposable (‘primitive’).

• This fixes the inversion relation, up to some zeta value.
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• Weight 3:
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• Weight 3:
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• At this stage however we have lost everything proportional 
to zeta values.
➡ Go one step up!

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln
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1
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)

⊗ ln2

(
1
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)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1
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1
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]
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1

3
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−
π2

3
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)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always
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• Finally:

and                     from x=1.  
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• We could now go on like this and derive the inversion 
relations for arbitrary weight.
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as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,
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Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,
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, for n ≥ 4. It is however impossible to obtain these relations using symbols
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where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always
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• We could now go on like this and derive the inversion 
relations for arbitrary weight.

➡ No painful manipulation of the integral representation 
at any step!



Example: inversion relations

1

3
log(y) log3(1 − z) −

1

12
log4(1 − z) −

π4

90
,

G(1, 1, 1, 1 − z; y) =

Li4

(

z

1 − y

)

−

1

2
Li2(z) log2(1− y)+Li3(z) log(1− y)−Li4(z)−

1

6
log3(1− y) log(1− z)+

1

24
log4(1− y) ,

G(1, 1, 1− z, 1− z; y) = − log(x)Li3

(

z

1 − y

)

− Li4

(

x

1 − y

)

+ Li4
(

−

z

x

)

− Li4

(

z

1 − y

)

− Li3(1 −

z) log(1 − y) − Li3(z) log(1 − y) + log(1 −

z)Li3

(

z

1 − y

)

+Li4

(

1 −

1

z

)

+Li4(1−z)+Li4(z)+
1

2
log2(x) log(1−y) log(z)−

1

2
log(x) log2(1−y) log(z)+

π2

(

−

1

6
log(x) log(1 − y) +

log2(x)

12
+

1

6
log(1 − y) log(1 − z) +

1

12
log2(1 − y) +

log2(z)

12
−

1

6
log(1 − z) log(z)

)

+

1

3
log(x) log3(1 − y) −

1

4
log2(x) log2(1 − y) −

1

6
log3(x) log(z) + ζ(3) log(x) +

log4(x)

24
−

1

6
log3(1 −

y) log(1 − z) +
1

6
log3(1 − y) log(z) +

1

4
log2(1 − y) log2(1 − z) −

1

2
log(1 − y) log2(1 − z) log(z) −

1

12
log4(1 − y) − ζ(3) log(1 − z) +

log4(z)

24
−

1

6
log(1 − z) log3(z) +

1

4
log2(1 − z) log2(z) +

7π4

360
,

G(1, 1 − z, 1 − z, 1 − z; y) = log(x)Li3

(

z

1 − y

)

− log(1 − z)Li3

(
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1 − y

)

+ log(x)Li3

(
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1 − y

)

−

Li4
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−

z

x

)

+
1

2
log2(x)Li2

(

−

x

z

)

+
1

2
log2(1 − z)Li2

(

−

x

z

)

− log(x) log(1 − z)Li2
(

−

x

z

)

− log(1 −

z)Li3

(
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1 − y
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(
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1
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−

1
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1

2
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π2

(

1
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log2(x) −
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+

1
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log(1 − z) log(z)

)
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1

6
log3(x) log(1 − y) −

1

3
log(x) log3(1 − y) +

1

2
log2(x) log2(1 − y) +

1

4
log2(x) log2(z) +

1
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log2(x) log(1− z) log(z)−

1

2
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1
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log4(x) −

1

6
log(1 − y) log3(1 − z) +

1

3
log3(1 − y) log(1 − z) −

1

2
log2(1 − y) log(1 −

z) log(z) + ζ(3) log(1 − z) −
log4(z)
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+

1

6
log(1 − z) log3(z) +

1

6
log3(1 − z) log(z) −

7π4
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,
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1
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2
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6
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(

1 −

1

z

)
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1
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1
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x) − Li4(x) − Li3(1 − x) log(x) + Li4

(

1 −

1

z

)

+ Li4(1 − z) − Li4(z) − Li3(1 − z) log(z) +
1

4
log2(1 −

x) log2(1 − z) + π2

(

−

1
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log(1 − x) log(1 − z) +

log2(x)
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+

log2(z)
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)

+ ζ(3) log(x) − ζ(3) log(1 − x) +
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−
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,

G(−z, 1 − z, 1 − z, 1 − z; y) =
1

2
Li2(x) log2(1 − z) − Li2(x) log(x) log(1 − z) + Li3(x) log(1 − z) +

Li4(x) +
1

2
Li2(x) log2(x) − Li3(x) log(x) − Li4(1 − z) −
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6
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2
log(1 −

x) log2(x) log(1 − z) +
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1

6
log(1 − x) log3(x) ,

22

with x+y+z=1, 0 < x,y,z < 1.


