

The ADT fast losses test

Agnieszka Priebe, Tobias Baer, Bernd Dehning Mariusz Sapinski, Daniel Valuch

> CERN BE-BI-BL

MD Long term Planning

June 2012

Autumn 2012

ADT fast losses test

- ADT excitation
- Losses on the primary colimator
- Asymmetrical position of the jaws

- Energy 450 GeV & 4.0 TeV
- Pilot bunch (10¹⁰ protons)

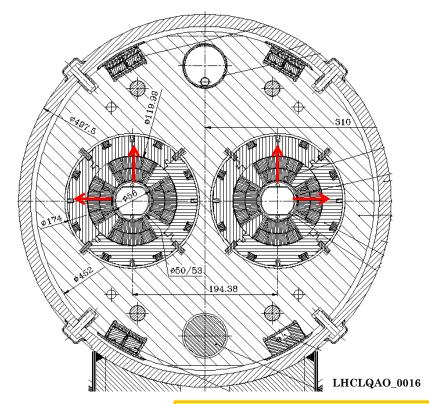
Quench Test

- 3-corrector orbital bump + ADT excitation
- Losses on the MQ

- Energy 450 GeV & 4.0 TeV
- Pilot bunch (10¹⁰ protons)

UFO timescale losses studies

A.Priebe, T.Baer, D.Valuch


Aims of the experiment

- 1) Recreate the conditions of fast (\sim 1ms) proton beam losses which are the most similar to the Quench Test foreseen in the end of run 2012
- 2) Study an use of the ADT system as a tool for loss induction
- 3) Check the impact of phase advance between transverse dampers and collimators on:
 - Excitation efficiency
 - Loss time structure
 - Loss efficiency

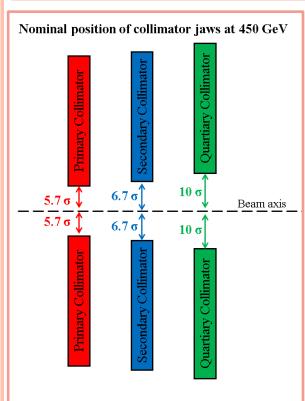
A.Priebe, T.Baer, D.Valuch

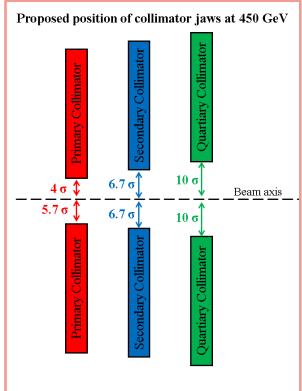
Beam parameters

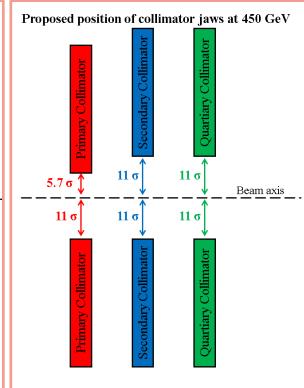
- 1) Beam intensity: 10¹⁰ protons (pilot bunch)
- 2) Beam energy: 450 GeV
- 3) Beam orientation:
 - a) Beam 1, horizontal
 - b) Beam 1, vertical
 - c) Beam 2, horizontal
 - d) Beam 2, vertical

The LHC arc half-cell location for autumn QT is not determined yet. Thus, all four scenarios of beam

losses must be studied.


Losses


Losses should appear on the outside of the coldmass


- a) $Vertical plane E_{dep}$ on an upper collimator jaw
- b) Horizontal plane (beam 1) $-E_{dep}$ on an external collimator jaw
- c) Horizontal plane (beam 2) $-E_{dep}$ on an internal collimator jaw

4

POSITION OF COLLIMATORS AT 450 GEV

Asymmetric position of TCP jaws

* S. Redaelli, "Status of collimation commissioning with beam", LHC Machine Committee meeting, 04.04.2012

Losses only on one side of an aperture (for Quench Test purpose)

Planning

A.Priebe, T.Baer, D.Valuch

1) Finding the critical loss location

- a) Change a position of TCP collimator jaw
- b) Set up the excitation in appropriate plane with ADT feedback loop sign swap method and apply a small gain
- c) Inject one probe bunch
- d) Observe what is and where the highest signal of BLM occurs
- e) Decrease BLM monitor factor depending on a value of losses

2) Ultimate data acquisition

- a) Set the excitation in the appropriate plane at maximum gain
- b) Change feedback sign
- c) Inject a probe beam
- d) Collect PM data

3) Return to the nominal settings

- a) Move back a position of collimator jaws to the nominal conditions (responsibility of the collimators team)
- b) Change the BLM monitor factor to 1.0 (responsibility of the BLM team)

each plane and beam each for repeated Steps

6

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

COMMENTS?

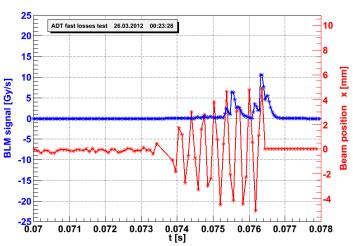
SUGGESTIONS?

7

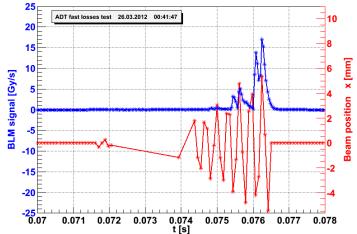
BACK-UP SLIDES

8

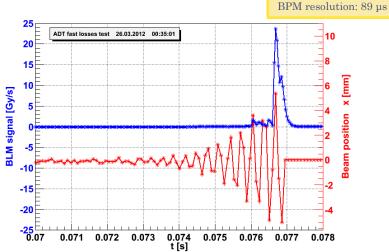
ADT MODES


The Transverse Damper (ADT) allows to create fast losses in the timescale of several LHC turns. Therefore, it can be used for UFO-like losses investigations.

There are three methods of exciting the beam:


- 1) Coherent excitation (used for injection/abort gap cleaning)
- 2) White noise excitation (used for controlled emittance blow-up)
- 3) Feedback sign flip (typically this is a failure mode)

The most convenient mode for the fast losses studies

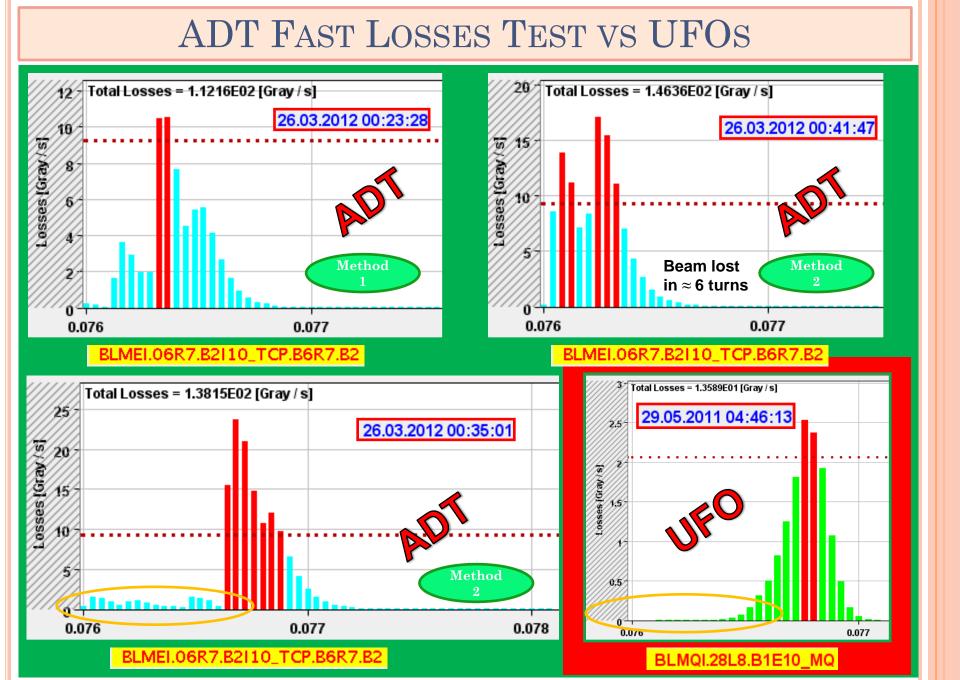

ADT FAST LOSSES TEST (26TH MARCH 2012)

Method 1: Coherent excitation

Method 3: Feedback sign flip, decreased gain

Method 3: Feedback sign flip, max gain

The higher the gain is, the faster the oscillation amplitude increases


Energy: 450 GeV

Beam: 2

Plane: horizontal

10

BLM resolution: 40 µs

A.Priebe, T.Baer, D.Valuch

LHC elements where the changes will be implemented during the MD

No.	Beam	Plane	Collimator	ADT
1	1	Horizontal	TCP.C6L7.B1	ADTKH.A5L4.B1
2	1	Vertical	TCP.D6L7.B1	ADTKV.A5R4.B1
3	2	Horizontal	TCP.C6R7.B2	ADTKH.A5R4.B2
4	2	Vertical	TCP.D6R7.B2	ADTKV.A5L4.B2

TCP stands for Primary Collimator for Cleaning (C – horizontal collimators, D – vertical collimators) and ADT - Transverse Damper.

INVESTIGATIONS OF PHASE ADVANCE IMPACT

No.	Element	$\mu_{x}\left[2\pi ight]$	$\mu_{ m y}[2\pi]$
1	TCP.C6L7.B1	47.18	43.57
2	TCP.D6L7.B1	47.18	43.57
3	TCP.C6R7.B2	48.01	44.35
4	TCP.D6R7.B2	48.01	44.35
5	ADTKH.A5L4.B1	24.16	22.26
6	ADTKV.A5R4.B1	24.20	22.32
7	ADTKH.A5R4.B2	24.16	22.46
8	ADTKV.A5L4.B2	24.11	22.43

Tune:

 $Q_x = 64.28$

 $Q_y = 59.31$

Phase advances between collimators and transverse dampers were calculated:

$$\Delta\mu_{ADT\to TCP} = \mu_{TCP} - \mu_{ADT}$$

$$\Delta \mu_{\rm ADT \rightarrow TCP} = \mu_{\rm ADT} + (\text{Q-}\mu_{\text{TCp}})$$

Beam	Element	Horizontal [2π]	Vertical [2π]	Horizontal [deg]	Vertical [deg]
1	$ADT \rightarrow TCP$	23.02	21.25	72.0	90.0
2	$ADT \rightarrow TCP$	40.43	37.39	154.8	140.4

A.Priebe, T.Baer, D.Valuch

Potential risks

- 1) There is some finite probability that a bunch can miss the primary collimators (TCP), depending on the phase advance between the ADT and the TCP.
- 2) Particles can be stopped on one of the downstream collimators inducing a secondary particle shower.
- 3) In the worst case 1-2 magnets can quench with the probe beam at injection energy.
- 4) In order to minimize the risk we will start with the beam excitations at low gain and see if the losses occur in the location different from the expected one.
- 5) If the signal is high on the other collimators, we could retract them to a parking position.

A.Priebe, T.Baer, D.Valuch

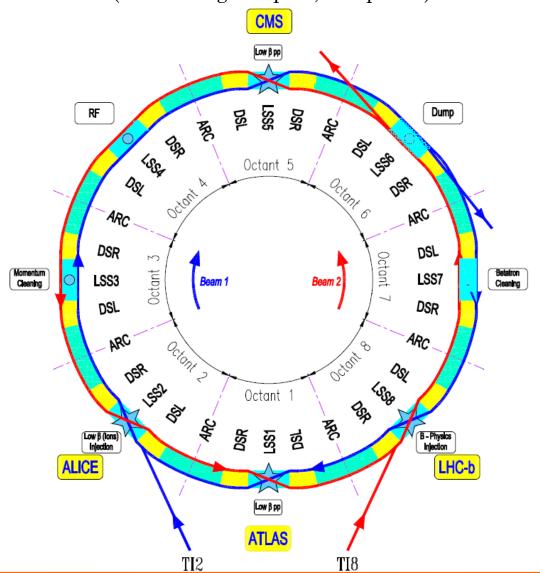
But ...

1) During the ADT fast losses test with symmetrical position of collimator jaws (26th March 2010) no significant losses appeared along the ring beside Octant 7 (TCLA.B6R7.B1).

- 2) Phase space coverage plots show that without TCP, the phase space is well-covered by other collimators (except TCDQ) and losses with these intensities shouldn't be a problem. (T.Baer)
- 3) During "Quench Margin at Injection" (ATS-Note-2011-067 MD) there was no quench with 3·10¹⁰ protons at 450 GeV lost on TCLIB.

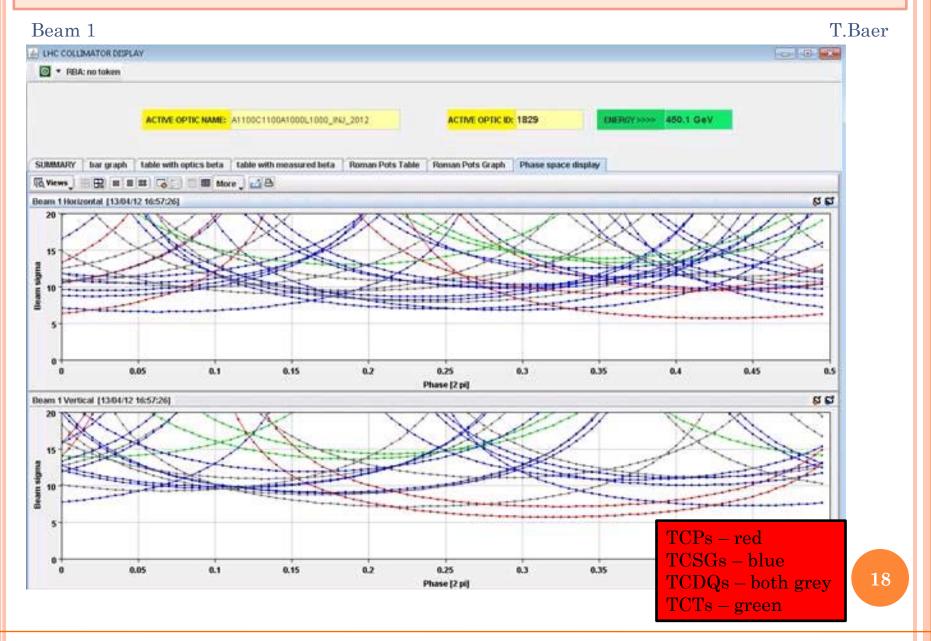
SUMMARY AND CONCLUSIONS

- 1. ADT can induce fast losses with a timescale of UFOs but with different temporal distribution.
- 2. ADT feedback sign flip method has turned out to be the most convenient for fast losses studies.
- 3. Asymmetrical position of collimator jaws will provide losses only on one side of the aperture (\rightarrow QT with 3-corrector bump scenario).
- 4. Two configurations of collimators were proposed.
- 5. Phase advance will might be crucial for the decision of QT location.
- 6. Presented MD plan is a part of preparation for the LHC end of run 2012 Quench Test (if given).ADT fast losses test with nominal energy (4.5 TeV) will be planned separately.

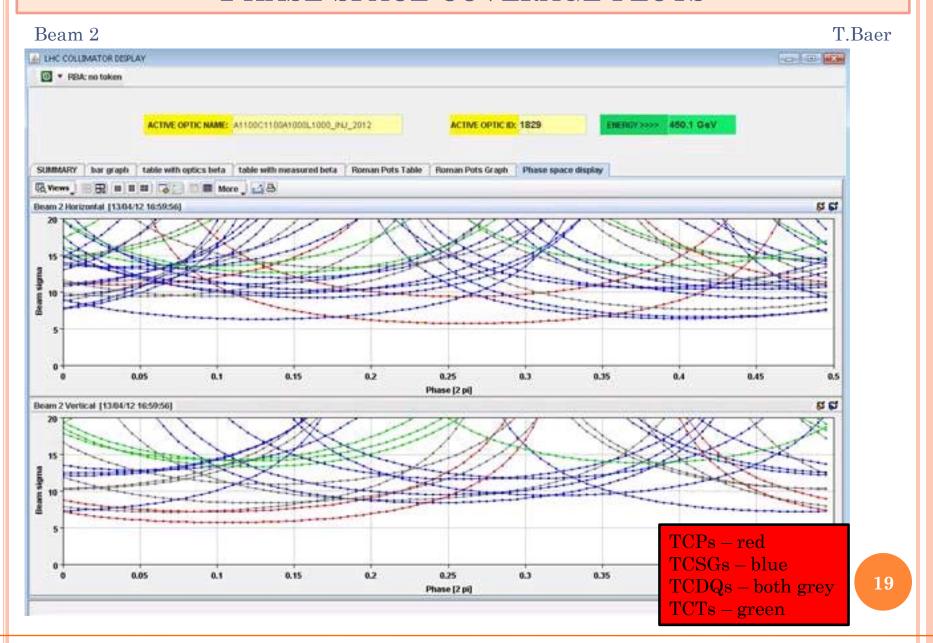

EDMS documents:

- A. Priebe, T. Baer, D. Valuch, "MD1-2012 ADT fast losses test at 450 GeV for UFO studies", EDMS No: 1212026 v.1

16


LAYOUT

Schematic layout of the LHC. Beam 1 circulates clockwise and Beam 2 counter-clockwise. (LHC Design Report, Chapter 3)



17

PHASE SPACE COVERAGE PLOTS

PHASE SPACE COVERAGE PLOTS

ADT FAST LOSSES TEST, 26TH MARCH 2012

ADT FAST LOSSES TEST, 26TH MARCH 2012

