

Fiber based hydrophones for ultra-high energy neutrino detection

E.J. Buis, E. Doppenberg, D. van Eijk, R. Nieuwland, P. M. Toet

TNO, Delft, the Netherlands

ernst-jan.buis@tno.nl

R. Lahmann

Erlangen Centre for Astroparticle Physics, University of Erlangen, Germany

Cosmic-ray experiments in water and ice

- Detection and study of high energetic cosmic neutrinos.
- Use water or ice as a detection medium

• Design of present experiments is based on strings equiped with light sensitive sensor (PMTs) to detect Cherenkov radiation from particle showers.

Cosmic ray neutrinos: energy range

- Present neutrino telescopes (IceCube, KM3NeT) are designed to detect energies up 10^{15} 10^{16} eV:
 - 37 candidates between 60 TeV and 3 PeV detected by IceCube

Acoustic particle detection

- Principle of acoutic detection: pressure pulse.
- First measurements using accelerators in the 60's (Askarayan, Learned, Sulak).
- Recent work done at UCL, Erlangen, Rome, ITEP and others:
 - Measurements at particle accelerators, hydrophone development
 - Simulation of hadronic showers and generation of acoustic signal

K. Graf, Erlangen, 2008

Expected acoustic signal

- Maximum of the signal between around 10 kHz, signal extends up to 30 kHz.
- Omni-present noise is represented by the Knudsen formula. It defines the background as so-called <u>deep sea states</u>.
- Large experimental set ups could be achieved using acoustic detection, because of the less absorption of sound in water (~1 km @25 kHz).

K. Graf, Erlangen, 2008

Expected acoustic signal

- Maximum of the signal between around 10 kHz, signal extends up to 30 kHz.
- Omni-present noise is represented by the Knudsen formula. It defines the background as so-called <u>deep sea states</u>.
- Large experimental set ups could be achieved using acoustic detection, because of the less absorption of sound in water (\sim 1 km @25 kHz).

Requirements on hydrophone system

- Sensitive:
 - Detect pulses at the mPa level in the frequency range 5-30 kHz
 - Sensitive to deep sea state zero
- <u>Simple</u>, robust and simple to integrate
- <u>Price</u> < 100 euro/sensor: >1000 sensors are required to build a large network.

Fiber hydrophones system

- Main components:
 - 1. Fibers with an Erbium doped grating
 - 2. Sensor
 - 3. Interogator

Fiber hydrophones system

Main components:

- 2. Sensor
- 3. Interogator

oil filled hose

1. Erbium doped fibers

- Pump laser $\lambda = 980$ nm, Erbium induced emission light $\lambda = 1550$ nm.
- Erbium is implemented in a grating structure. This results in an extremely coherent light source in the fiber it self.
- Include multiple sensors with an specific grating for each sensor.
- Up to ~10 20 sensors/fiber.

1. Erbium doped fibers

- Pump laser $\underline{\lambda}$ =980 nm, Erbium induced emission light $\underline{\lambda}$ =~1550 nm.
- Erbium is implemented in a grating structure. This results in an extremely coherent light source in the fiber it self.
- Include multiple sensors with an specific grating for each sensor.
- Up to ~10 20 sensors/fiber.

2. Sensor

- Convert presure pulse to a mechanical deformation of the fiber: <u>strain</u>
- Mechanical sensor determines the dynamical frequency range.

CAD model Dimensions: 45x9 mm

3. Interogation system

- A fiber is used to read out an interogator.
- Pump laser power ~100 mW
- Received power ~10 μW

Hydrophone characterization

- Sensitivity, noise measurements.
- Linearity.
- Measurements in an oil filled hose.

Oil hose

Experimental setup in basin

- Using an anechoic basin at TNO (Acoustically insulated).
- Dimensions of the basin 8x10x7m, (basin should be large to avoid mix of signal and echo).
- Compare to well-calibrated commercial hydrophone

Response function

- Response function with respect to the (calibrated) reference hydrophone (B&K8101).
- Response curve is flat. Peak at 5.5 kHz is mechanical resonance.

Linearity

- Response to a single tone (at given frequency) is measured as a function of the input current in to the projector.
- Output signal is measured for two reference hydrophones and 2 fiber laser hydrophones.
- Fiber laser hydrophones are linear down to levels compared to sea state 1

Pulse reconstruction

- Pulse train was generated to detect individual pulses
- Simple passband filter was applied (4th order Butterwordth)

Pulse reconstruction

- Pulse (also from echo) stands well above the noise.
- A power spectral density has been reconstructed from 100 pulses.
- Reconstructed pulse is as low as 1 mPa, the shape shows ringing.

Conclusions

- Acoustic detection provides a way to study neutrino's with ultra high energy.
- Fiber laser hydrophones are sensitive enough to detect (cosmic-ray induced) pulses at the <u>mPa level</u> in the frequency range 5-20 kHz. Acoustic measurement of cosmic rays can become <u>ocean noise limited</u>.
- Only small difference in performance when hydrophone is used in oil hose.
- Impulse events show ringing. To be investigated further (important for marine biology).
- Implementation of fiber laser hydrophones have <u>many advantages</u> over piezohydrophones:
 - Sensitive, cheap and simple
 - No electronics X-talk, low power dissipation
 - Relative cheap to deploy

Concept experimental setup

> 100 strings, > 1000 hydrophones