

Large Area Micro-Channel Plates for LAPPD™

TIPP, June 2-6, 2014

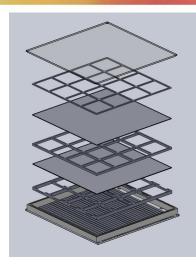
Incom, Inc, Charlton, MA, USA

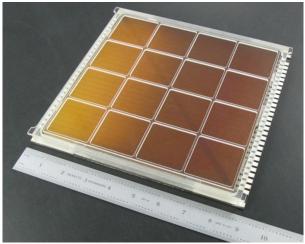
Christopher A. Craven (cac@incomusa.com), Daniel C. Bennis, Justin L. Bond, Michael J Minot, Aileen O'Mahony, Joseph M. Renaud, Michael E. Stochaj

Argonne National Laboratory, Lemont, IL, USA Jeffrey W. Elam, Robert G. Wagner, Karen Byrum, Anil U. Mane

<u>University of California, Berkeley, CA USA</u> Oswald H.W. Siegmund, Jason B. McPhate

<u>University of Chicago, Chicago IL, USA</u> Henry J. Frisch, Andrey Elagin, Richard Northrop, Matthew Wetstein

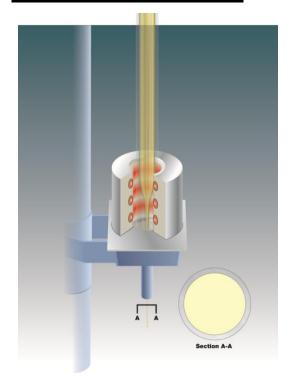

- LAPPD program description
- Incom process for making large area glass capillary arrays
- Turning them into MCPs with coatings applied by Atomic Layer Deposition (ALD)
- Performance benefits over conventional MCPs
- Manufacturing 20 x 20 cm sealed detector tiles



LAPPD Collaborative, LAPPD™ Detector Tile

- •Large <u>Area Picosecond Photo-Detector</u>
- Developed under a collaboration between
 - Argonne National Laboratory
 - University of Chicago
 - Univ. of CA, Berkeley Space Sciences Lab
 - University of Hawaii
 - Fermilab
 - Incom, Inc.

20 x 20 cm (8 x 8") low-cost, MCP-based photodetectors for HEP, medical, defense, space, and other applications



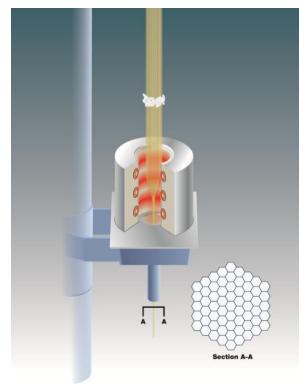
Tile mock-up

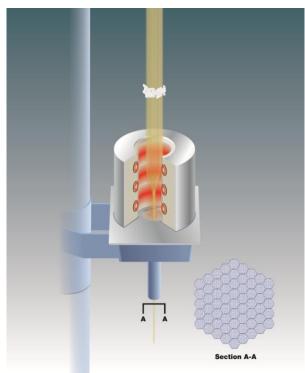
How Do You Make a Big Glass Capillary Array?

Step 1: draw glass

Incom's proprietary "etchless" approach. A wide range of glasses can be used.

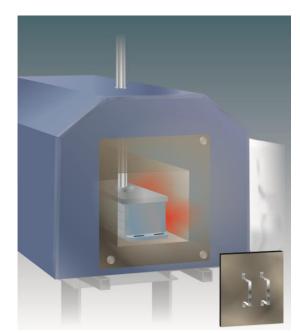
Incom draw towers




Conventional MCPs are drawn as fiber optics, with core and clad glass

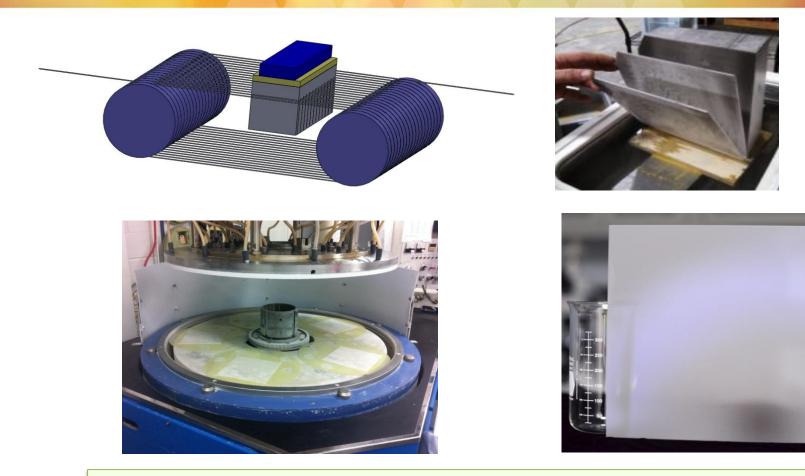
Step 2: Bundle and Redraw a "Multi"

- Dozens to thousands of fibers are bundled into a hexagonal multi (same as conventional MCPs)
- The multi bundle is drawn to make a hexagonal multi fiber
- For smallest pore sizes, process is repeated to make a "multi-multi"



Step 3: Assemble Step 4: Fuse

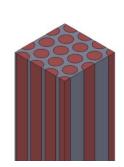
Multi fibers assembled in a shell

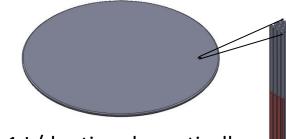

Heat & pressure applied to fuse into a block

228 mm (9") square capillary block

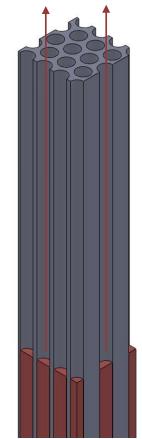
Step 5: Slice, Machine to Size, Grind, Polish

To produce polished glass capillary array plates
Conventional MCPs: polished fiberoptic plates




For Conventional MCPs, **Next Steps Are:**

Etch the fiberoptic plate to remove original core glass


Core glass is dissolved away

60:1 L/d ratio schematically shown (partially etched)

H-fire to produce resistive/emissive coating

Not many glasses can be drawn, etched, and fired this way

Etching limits L/d ratio

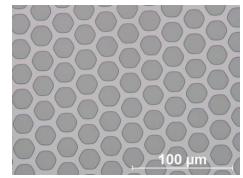
The Few Glasses Available for Conventional MCP Have Limits

Conventional MCP glasses are:

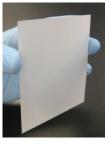
- Fragile. This limits overall MCP size.
- •<u>Susceptible to warping</u>. Can warp if not stored under dry N₂ or vacuum, making detector assembly difficult.
- •<u>Noisy</u>. The glass typically contains K or Rb. Their radioactive isotopes add to background noise.

The functional coatings produced by H-firing:

- •Have <u>limited secondary electron yield of ~2</u>
- •Require an <u>extensive burn-in</u> to achieve stable gain
- •Have resistive/emissive characteristics that <u>cannot be</u> <u>independently tuned</u>

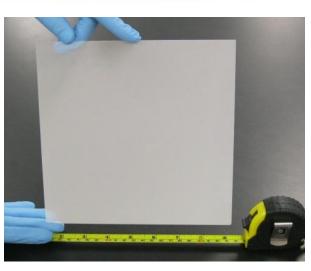


Instead, Choose Your Glass...


Incom uses commercial glasses

- Stronger = bigger for a given pore size & thickness
- Flat
- Lower cost
- Pb-free (RoHS compliance)
- <u>Alkali-free</u>, <u>low noise</u>: <0.085 events/cm²/sec, vs. 3 events /cm²/sec in conventional MCPs

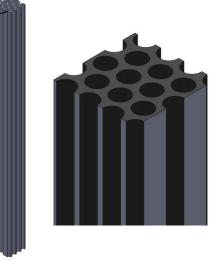
O.H.W. Siegmund, N. Richner, G. Gunjala, J.B. McPhate, A.S. Tremsin, H.J. Frisch, J. Elam, A. Mane, R. Wagner, C.A. Craven, M.J. Minot, "Performance Characteristics of Atomic Layer Functionalized Microchannel Plates" Proc. SPIE 8859-34, in press (2013).

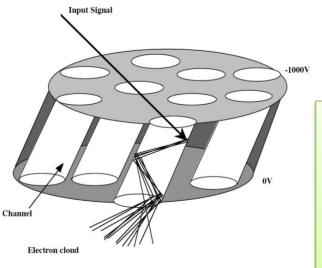

Typical glass capillary array, 20 μm pores, 60-65% OAR

20 x 20 cm, 20 μm pore, 1.2 mm thick

95 mm x 95 mm, 20 μm pore, 0.25 mm thick

Regularly making 203 mm (8") square plates with 20 μm pores

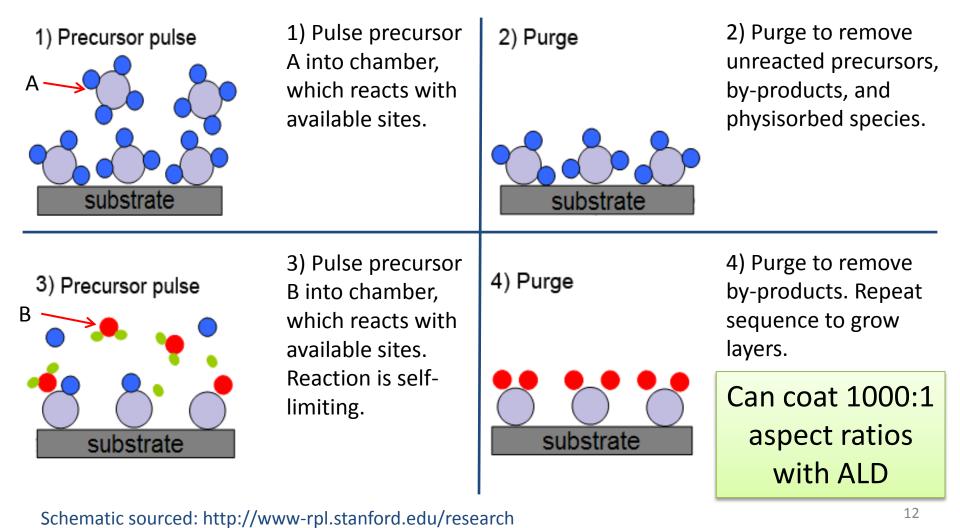

INCOM

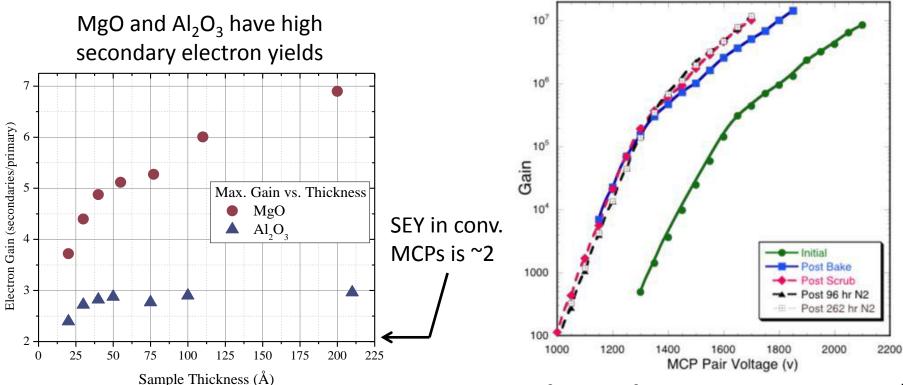

Bright Ideas in Fiberoptics

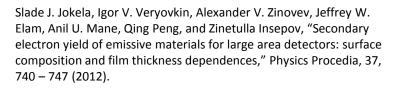
... and Functionalize by Atomic Layer Deposition (ALD)

Engineer your coatings

- Deposit **resistive layer** to achieve desired resistance
- Deposit high yield emissive layer
- Can be deposited on many glasses

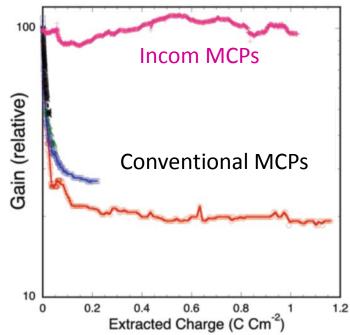

- Currently done by Argonne, Incom is acquiring ALD capability
- Incom is sole licensee of ALD technologies from Argonne and Arradiance

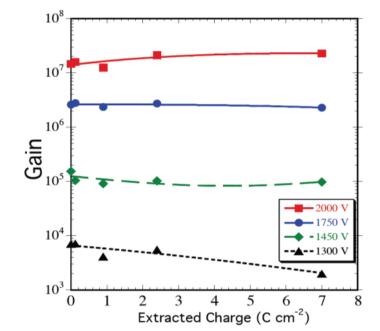

Atomic Layer Deposition


Bright Ideas in Fiberoptics

ALD is characterised by sequential precursor pulsing:

INCOM Gain is High and Bright Ideas in Fiberoptics Reproducible in These MCPs



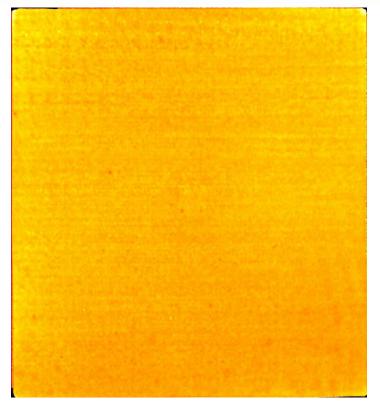


Gain of a pair of 33mm 20 μm pore, 60:1 L/D, MgO-ALD MCPs during preconditioning steps. Gain increases 10x after initial bake, and does not drop after storage in N₂.

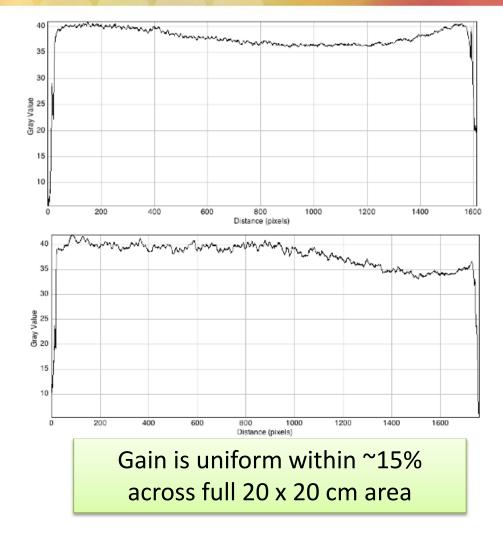
O.H.W. Siegmund, J.B. McPhate, J.V. Vallerga, A.S. Tremsin, H.E. Frisch, J.W. Elam, A.U. Mane, R.G. Wagner, "Large area event counting detectors with high spatial and temporal resolution," 15th International Workshop on Radiation Imaging Detectors, 23–27 June 2013, Paris, France, JINST_072P_1213, in press

INCOM Gain is Stable vs. Extracted Bright Ideas in Fiberoptics Charge

Conventional MCPs require an extensive "burn-in" to achieve a stable gain. Little burn-in is required for Incom MCPs.

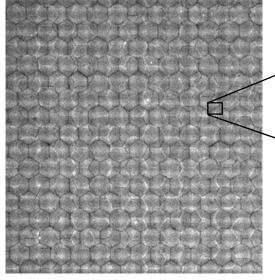

O.H.W. Siegmund, J.B. McPhate, S.R. Jelinsky, J.V. Vallerga, A.S. Tremsin, R.Hemphill, H.J. Frisch, R.G. Wagner, J. Elam, A. Mane and the LAPPD Collaboration, "Development of Large Area Photon Counting Detectors Optimized for Cherenkov Light Imaging with High Temporal and sub-mm Spatial Resolution," NSS/MIC, IEEE.N45-1, pp.2063-2070 (2011) Gain is high and stable vs. extracted charge. Plot is of MCP gain at several fixed voltages during a "burn-in" test extracting 7 C/cm² at ~3 μA output current for a pair of 33 mm, 60:1 L/D, 20 μm pore ALD MCPs.

Oswald H. W. Siegmund, John V. Vallerga, Anton S. Tremsin, Jason B. McPhate, Xavier Michalet, Shimon Weiss, Henry Frisch, Robert Wagner, Anil Mane, Jeffrey Elam, Gary Varner, "Large Area and High Efficiency Photon Counting Imaging Detectors with High Time and Spatial Resolution for Night Time Sensing and Astronomy," Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, in press, (2012). 14


INCOM

Gain is Uniform Across Area

Bright Ideas in Fiberoptics



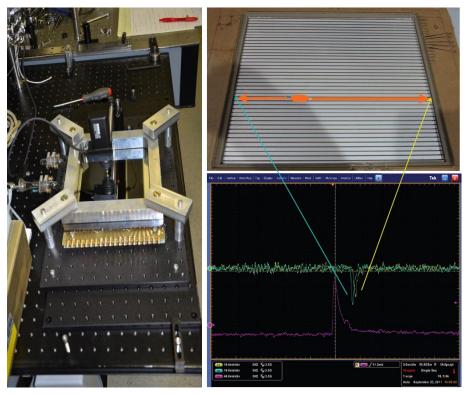
Gain map image for a pair of 20 μm pore, 60:1 L/D, ALD borosilicate MCPs, 950 V per MCP, 184 nm UV

O.H.W. Siegmund, N. Richner, G. Gunjala, J.B. McPhate, A.S. Tremsin, H.J. Frisch, J. Elam, A. Mane, R. Wagner, C.A. Craven, M.J. Minot, "Performance Characteristics of Atomic Layer Functionalized Microchannel Plates" Proc. SPIE 8859-34, in press (2013).

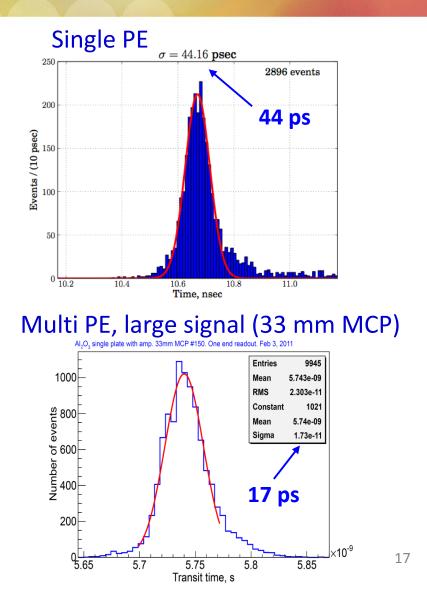
MCP Spatial Resolution Better than 20 µm

INCOM

Bright Ideas in Fiberoptics


Section (~15 x 15 mm) of an accumulated image for a pair of 20 μ m pore 60:1 L/D ALD MCPs at ~10⁶ gain taken with a 95 mm cross strip detector, 184 nm UV

Using high resolution cross-strip delay line readout, individual 20 µm MCP pores are resolved (Ossy Siegmund, UC Berkeley)


Upper: small section of image on left. Lower: gain map image of the same area.

O.H.W. Siegmund, J.B. McPhate, J.V. Vallerga, A.S. Tremsin, H.E. Frisch, J.W. Elam, A.U. Mane, R.G. Wagner, "Large area event counting detectors with high spatial and temporal resolution," 15th International Workshop on Radiation Imaging Detectors, 23–27 June 2013, Paris, France, JINST_072P_1213, in press

INCOM Temporal Resolution Better Bright Ideas in Fiberoptics than 50 picoseconds

University of Chicago "demountable" station for testing 20 cm square LAPPDs (Matt Wetstein, Andrey Elagin)

Making 20 cm x 20 cm Detector Tiles

We are developing <u>capability to fabricate large area sealed</u> <u>detector tiles</u>, not just MCPs

In-house equipment being brought in for:

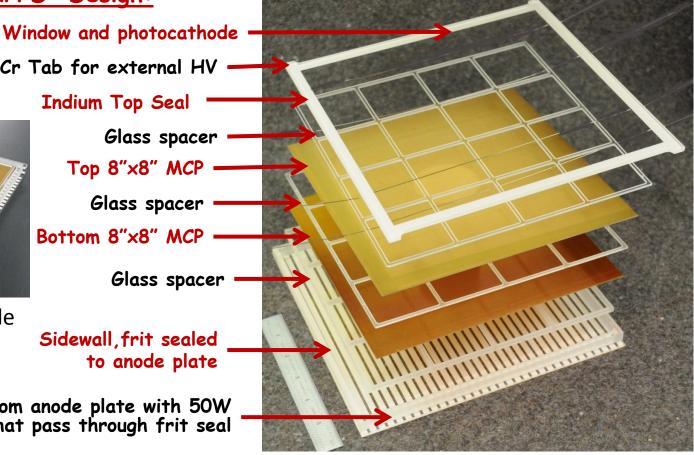
- •Electrode deposition
- •ALD coating
- Detector tile assembly
- Additional testing electronics

• <u>Incom is the company commercializing the LAPPD™</u>

• 2-year contract with the US DoE, April 2014 – April 2016

20 x 20 cm **Photodetector Tile**

LAPPD[™] Design:

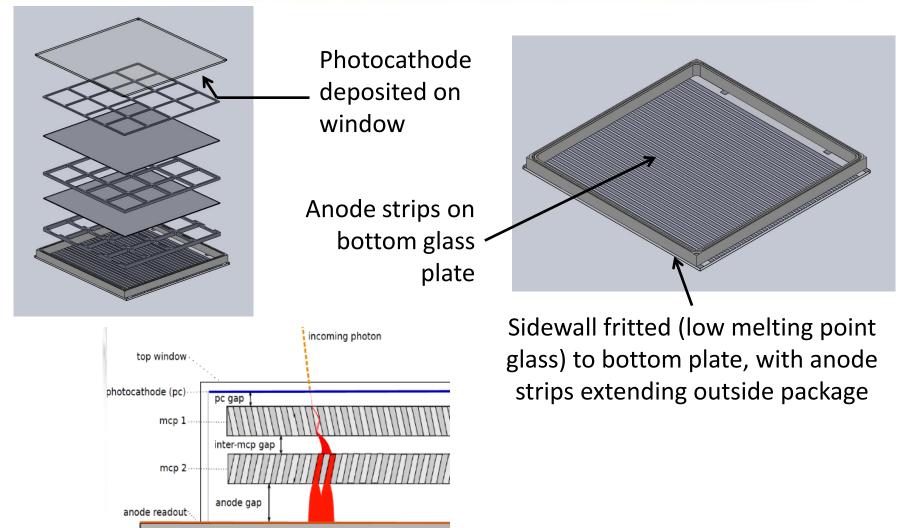

NiCr Tab for external HV

Indium Top Seal Glass spacer Top 8"x8" MCP **Glass spacer** Bottom 8"x8" MCP **Glass spacer**

Mock-up of detector tile (everything but photocathode)

Sidewall, frit sealed to anode plate

Bottom anode plate with 50W strips that pass through frit seal



Bright Ideas in Fiberoptics

All inexpensive glass

20 x 20 cm Photodetector Tile

Bright Ideas in Fiberoptics

MCP Description/ Specifications

Parameter	Demonstrated Results in MCPs		
Physical dimensions	Overall: 203 x 203 x 1.2 mm, flat across area ±12.7µm		
	Operational area 200 x 200 mm		
	Pore size 20 μm, pitch = 25 μm, OAR=60-65%		
ALD coatings	Resistance: selectable, typically 10-25 MOhm		
	SEE Layer: MgO or Al ₂ O ₃		
Gain	10 ⁵ @ 1400 V, 10 ⁷ @ 2000 V,		
	(test from a pair of 33 mm MCPs of same material)		
Gain	Variability across area <20%		
Uniformity			
Background	0.085 events cm ⁻² sec ⁻¹ at 7x10 ⁶ gain, 1025 V bias on each MCP.		
Rates	Intrinsic MCP background rate ~35kHz at the highest running gain		

<u>Sizes we have made</u>

- •10 mm round, 20 μm pore
- •33mm round, 20 µm pore
- •33mm round, 10 μm pore
- •86.6 mm round, 10 μm pore

- •12 mm square, 20 µm pore
- •50 mm square, 10 µm pore
- •203 mm square, 20 µm pore
- •Other intermediate sizes

LAPPD[™] Preliminary Specifications

Parameter	Demonstrated Results in LAPPD [™] Format	Production Target
QE	20-25%, tested on a 20 x 20 cm bi-alkali photocathode at 350-400 nm, with ±15% uniformity over the full area	Maximize
Spatial Resolution	5 mm for single photons, 1 mm for large signals Also depends on software and readout electronics	Application Specific 1-5 mm
Temporal Resolution	<50 psec, tested using a 610 nm laser with a spot image of <5mm FWHM at high pulse amplitudes	≤40 psec

Applications

Applications

•High energy physics

- Water Cherenkov counters (see Matt Wetstein's talk)
- Large scintillation detectors (see Andrey Elagin's talk)
- Vertex separation and particle I.D. in time-of-flight measurements
- Accelerator beam diagnostics
- •Defense and homeland security: neutron and neutrino detection
- •Medical: PET scanners
- •Space: UV detectors
- •Other commercial applications: image intensifiers, streak cameras, mass spectrometers, MCP-based channel electron multipliers...

Acknowledgements

Bright Ideas in Fiberoptics

United States Department of Energy

- Grant # DE-SC0009717, TTO Ph II, "Fully Integrated Sealed Detector Devices," 4/15/14 – 4/14/16
- Grant # DE-SC0011262, SBIR Ph I, "Further Development of Large-Area Micro-channel Plates for a Broad Range of Commercial Applications," 2/19/14 – 11/18/14

LAPPD Collaborative

 Argonne National Laboratory, University of Chicago, University of California, Berkeley Space Sciences Laboratory, Fermilab, and University of Hawaii for continuing development of the LAPPD technology

Key Feature	Conventional MCPs	Incom MCPs	Incom Advantage
Size		Way bigger	Large area, lower cost
Base glass	Fragile	Stronger	Larger size, opportunity for thinner MCP or higher OAR
Flatness	Can warp if care is not taken during storage	Remains flat	Ease of device fabrication
Dark Count	~3 cm ⁻² s ⁻¹	<0.085 cm ⁻² s ⁻¹	Enhanced signal to noise
Secondary Electron Yield	~2	2.5-5	Greater gain, or lower voltage for same gain
Scrubbing Time	Many hours	Little or none required	Lower installed cost

Incom, Inc.

294 Southbridge Road Charlton, MA 01507 USA 508-909-2200 www.incomusa.com

<u>Technical questions</u> Chris Craven Sr. Processing Engineer <u>cac@incomusa.com</u> <u>Sales inquiries</u> Jeff Solari Director of Sales jbs@incomusa.com