

CMS Trigger Improvements towards Run II Muriel Vander Donckt, IPNL Lyon

ipn

On behalf of the CMS collaboration

The CMS Triggering System

In 2012

Hz

~ 13000

commercial CPUs

~400 Hz

- FPGA implemented algorithms
- 4 µs latency
- Reduces the rate down to 100kHz
- L1-Accept triggers read-out of the detector
- 2. High Level Trigger
 - Software selection (>400 algorithms for maximum physics reach)
 - Decision taken in < 200ms
 - Reduces the rate to 400Hz
 - HLT-accept triggers write-out of the event,

The Challenges of Run II

M. Vander Donckt, TIPP2014

$8 \text{TeV} \rightarrow 13 \text{ TeV}$

- Expect a factor 2 in cross section from the increased energy
- >2 for multiple objects triggers due to combinations

We face a rate x 4 at least

50 ns \rightarrow 25 ns bunch spacing

- Factor 2 in rate •
- Increased out-of-time pile-up •

Pile Up

- 2012 <PU> ~ 25
- 2015 <PU> 20 to 50
- Level 1 constraints :
 - we need to keep the output rate down to 100kHz
- HLT constraints:
 - Increase the computing power to be able to cope with increased PU

Level 1 Trigger

L1 Trigger in 2012

Calorimetric L1 Objects from Global Calorimetric Trigger

- Ecal deposits:
 - e/γ objects: (w/ or w/o calorimetric isolation)
- Ecal+Hcal deposits :
 - Jets : up to 4 central, 4 forward, and 4 tau candidates
 - global quantities: MET, HT

Muon L1 Objects from the Global Muon Trigger

- muon candidates
 - up to 4 candidates from the hits in the muon detectors

128 algorithms (bits) based on

- the candidates
- their quality
- their combinations

Some triggers tend to increase non-linearly with PU, e.g.: ΣE_T (jet) for E_T >threshold

Multiple object triggers : Combinatorial effects

L1 Trigger upgrade for Run II

Replace the calorimeter, muon, and global trigger

- Stage 1 : 2015
 - pile-up subtraction for jets, energy sums, e/γ isolation
 - dedicated τ trigger
 candidates (4x4 4x8)
 towers)
 - New muon chambers
 - Increased granularity in CSC readout

- 2016 Stage 2
 - new muon trigger
 - Single track finder for DT, CSC & RPC systems → improved tracking
 - muon isolation using calorimetric information
 - new calorimetric trigger
 - increased granularity (7.4 in $\eta \& \phi$) \rightarrow tower-based isolation
 - new Global Trigger
 - increased number of candidates (at least x 2)
 - more powerful logic, improved resolution
 - support for more complex topologies (soft muon b-tagging, VBF jets, ...)

L1 Trigger upgrade for Run II

Calorimeter Trigger

Muon Trigger

PU subtraction at L1

effect of pile-up subtraction on energy sums and multi-jet trigger

performance of upgraded L1 tau trigger

- improved efficiency at high p_t
- improved robustness vs. pile-up M. Vander Donckt, TIPP2014

03/06/14

L1 E/y trigger

New tower-based clustering :

- sharper turn-on
- better position resolution, η \bullet dependent calibration

pgrade

.0.05 9.05

0.04

0.03

0.02

🖌 Run

ECAL Barrel

Run 1

Upgrade

√s = 8 TeV

Δη

-0.2

-0.1

0

ECAL Barre

Upgrade

0.2

0.3

Run 1

0.1

CMS Preliminary, √s = 8 TeV

 $\Delta \phi$

а. 0.06

0.05

0.04

0.03

0.02

0.01

rate reduction by a **factor 2** ~ **3**, with a **similar** efficiency

new muon pT assignment (bigger LUTs, post-processing)

JB

ipni

Lvon 1

High Level Trigger

HLT online reconstruction

L1-Accept

Prod

Filter

Prod

Filter

Prod

Filter

HLT decision

- the HLT is a "sped up" version of the offline reconstruction software. To keep average processing time per event low.
- modular approach:
 - reconstruct the **fastest object first**
 - L1 $\mu \rightarrow$ L2 spectrometer $\mu \rightarrow$ L3 tracker+spectrometer μ
 - L1 jet \rightarrow "calo" jet \rightarrow tracking and particle flow jet
 - reject an event as soon as possible
- only look around candidates from a previous step
 - regional "unpacking" and reconstruction
 - read the detector data around L1 objects
 - reconstruct tracks inside jets, or around leptons
- keep combinatorics under control
 - reject pile-up, limit the number of candidates being evaluated

Over 400 algorithms in 2012

- μ^{\pm}
 - "L2" μ-spectrometer muons
 - "L3" tracker+µ-spec muons
 - tracker-based isolation
- γ
 - based on ECAL superclusters
 - calorimeter-based id and isolation, tracker-based isolation
- e[±]
 - match ECAL superclusters, pixel tracks, and full tracking
- calorimeter-based id and isolation, tracker-based id and isolation
 ^{03/06/14} M. Vander D

- τ[±]
 - particle flow reconstruction
- jets, MET, HT
 - particle flow-based jets and MET
- b-tagging
 - jets, full tracking
 - secondary vertex reconstruction
- and more...
 - dE/dx, ...

M. Vander Donckt, TIPP2014

PL Rates & timing vs Luminosity

HLT rates vs. Luminosity

Ideal behaviour = linear increase

Effect of PU on composite triggers

8E33

8000

8E33

multi object triggers with pile up corrections multi object triggers affected by pile up

M. Vander Donckt, TIPP2014

Effect of pile-up on isolation cuts

High Level Trigger for 2015

- **double** the HLT rate
 - thanks to the increase in offline storage and processing
 - but we still need an effective reduction by a factor ~2
- reduce effective rate by a factor 2, keeping the same physics acceptance
 - make better use of the available bandwidth
 - tighten triggers for signal samples, use dedicated triggers for background samples
 - improve **online reconstruction** and calibrations **to match** even better the **offline** and analysis objects
 - make a wider use of tracking and particle-flow based techniques
 - reduce the difference between online and analysis selection cuts
- increase the available computing power of the HLT farm

Using Particle Flow clustering

sharper turn-on curves

More efficient isolation allows tighter improved resolution, will yield cuts, and improved background rejection M. Vander Donckt, TIPP2014 20

Using Particle Flow Isolation

03/06/14

21

CMS Data, 2012, vs = 8 TeV, Preliminary CMS Simulation, 2014, Vs = 13 TeV, Preliminary signal efficiency 96'0 86'0 86'0 Efficiency 1.04 **99%** Kalman Filtered Tracking 1.02 Gaussian-Sum Filtered Tracking 1.00 0.98 0.96 0.92 2012 isolation 0.94 0.9 barre GSF Rate / KF Rate = 75% endcabs 0.92 0.88 proposed 2015 isolation barrel 0.90 endcabs 150 200 100 250 300 0.86 E_T [GeV] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 GSF vs KF : 25% rate reduction for same background efficiency efficiency, non gaussian electron energy loss PF isolation : rejection improved by $\sim 30\%$ in barrel for same 99% signal efficiency M. Vander Donckt, TIPP2014

Tracking: Gaussian Sum Filter

Using Particle Flow Isolation

[5%]

Tracking improvements

- **iter0**: prompt tracks <u>high</u> p_T [78%]
- **iter1:** prompt tracks <u>low</u> p_T [15%]
- **iter2:** recover prompt tracks high p_T

tracking : time -75% @PU44

- Only around region of interest
- Primary vertex constraint

M. Vander Donckt, TIPP2014

See Mia Tosi's talk in tracking session

Muon reconstruction for 2015

Muon tracking:

- recovering tracks including outer tracker hit
- Additional recovery using insideout tracking

Quality cuts:

- Distance to primary vertex
- $\chi^2/ndof$

Muon Isolation:

- Tuned PU subtraction
- Iterative-tracking usage

B-tagging Improvements

Improved Fast Primary Vertex :

- Regional reconstruction of pixel tracks with η compatible high pt jets
- Efficiency $84 \rightarrow 90\%$
- Time -30%

Improved tracking:

- Iterative tracking using FPV input
- Deterministic annealing PV
- Time : 15% faster
- Increased b-tag efficiency for same light quark rejection

Conclusions

Conclusions

- Trigger issues for physics at high luminosity LHC
 - high instantaneous luminosity means high rates and high pileup
- L1 trigger
 - more advanced algorithms
 - more advanced electronics
 - higher granularity

- High Level Trigger
 - increase computing power
 - more advanced offline algorithms used online
 - take advantage of new developments in processors
 - higher output rate
- We are on the right track to meet the challenge !