The TDCPix ASIC: Tracking for the NA62 GigaTracker

 $\underline{\mathsf{M.\ Noy}^a}$ G. Aglieri Rinella a S. Bonacini a J. Kaplon a A. Kluge a M. Morel a L. Perktold a K. Poltorak a

^aCERN, CH-1211 Geneva 23, Switzerland

5th June 2014

5th June 2014

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance

Pixel Jitter: Test Output

TDC Performance

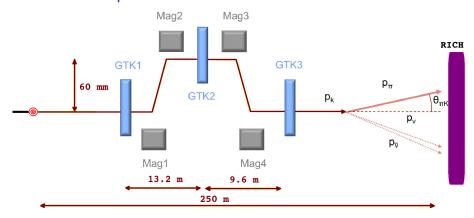
Full Chain Performance

Summary

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

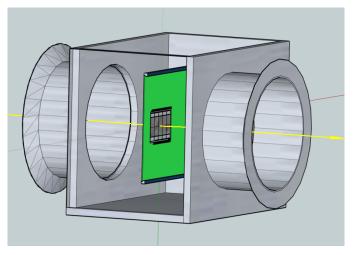
Measured Performance


Pixel Jitter: Test Output

TDC Performance

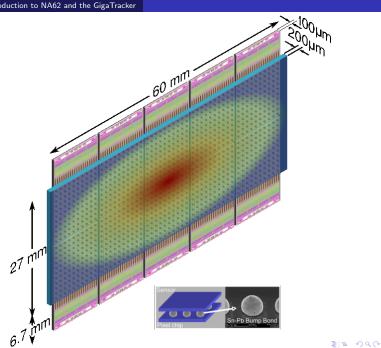
Full Chain Performance

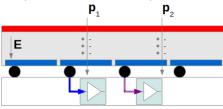
Summary

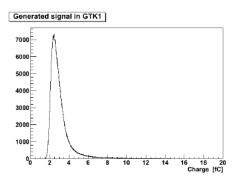

The NA62 Experiment

- Trajectory
 - momentum
 - angle

- ► Time
 - correlate hits with RICH
 - $ightharpoonup \leq 200\, ps(RMS)$ per station

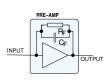

GTK Station in the Beam Line

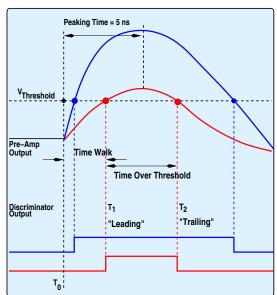

▶ in vacuum


- centred on the beam
- ▶ $0.8 \rightarrow 1 \text{ GHz beam rate}$

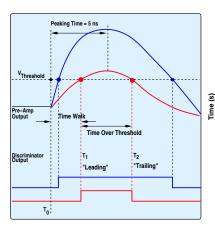
- 4 □ > 4 圖 > 4 圖 > 4 圖 ≥ 1 = り Q (?)

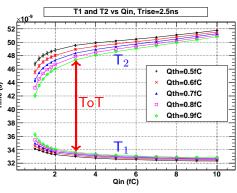
Principle Of Sensor Operation




- $ightharpoonup V_{bias} \sim$ 300-600V
- charge release mechanism is stochastic
- Landau distribution

$$Q_{MP} = 2.4 fC$$


- ▶ $1 fC \le Q \le 10 fC$
- Segmented electrodes give spatial information
- ▶ Thickness: $200\mu m$

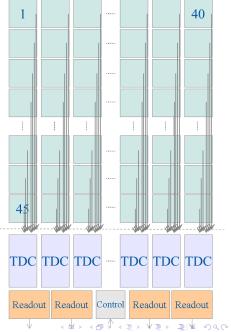

Pre-Amplifier & Discriminator Signals

Pre-Amplifier & Discriminator Signals

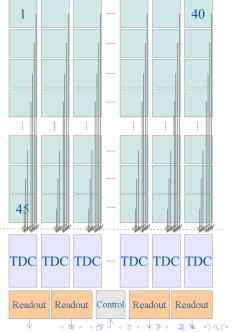
Introduction to NA62 and the GigaTracke

The TDCPix Chip Architecture

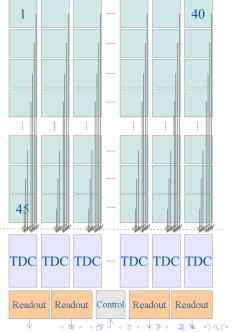
Measured Performance

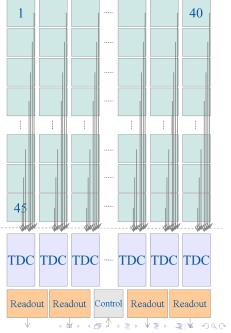

Pixel Jitter: Test Output

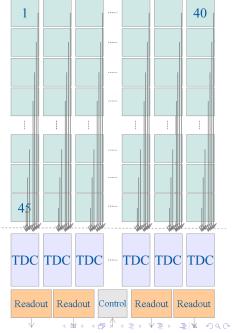
TDC Performance

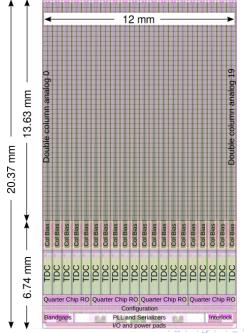

Full Chain Performance

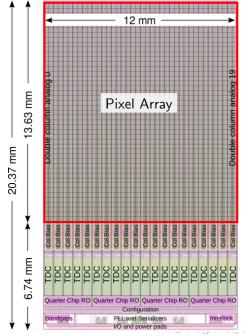
Summary

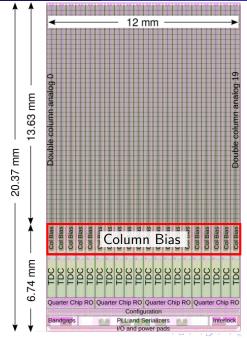

- ► 40 x 45 pixels
 - ▶ 300x300 μm^2
 - asynchronous

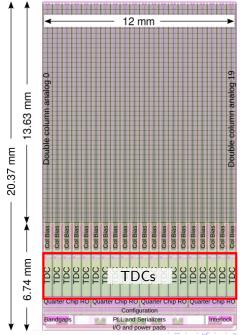

- ► 40 x 45 pixels
 - ► 300×300 μm^2
 - asynchronous
- ► End-Of-Column
 - per-pixel hit signal to EOC

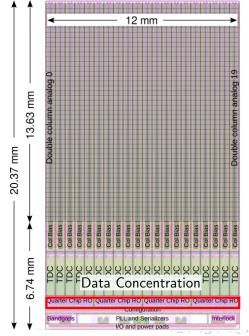

- ► 40 x 45 pixels
 - ► 300×300 μm²
 - asynchronous
- ► End-Of-Column
 - per-pixel hit signal to EOC
- ▶ 360 dual TDC channels
 - ▶ TDC Bin size $\sim 97\,ps$

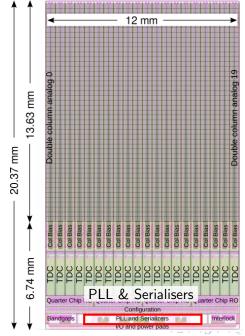


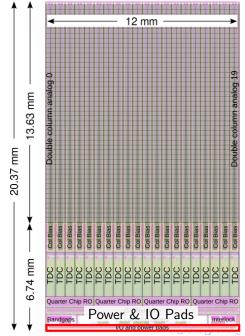

- ► 40 x 45 pixels
 - ▶ $300 \times 300 \, \mu m^2$
 - asynchronous
- ► End-Of-Column
 - per-pixel hit signal to EOC
- ▶ 360 dual TDC channels
 - ▶ TDC Bin size $\sim 97\,ps$
- self-triggered operation
 - ► Rate:210MHits/s
 - $4 \times 3.2 \, Gb/s$ serialisers

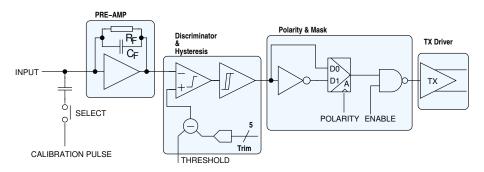


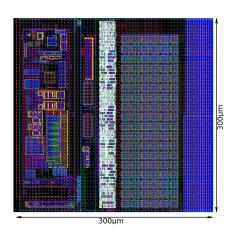

- ► 40 x 45 pixels
 - ► 300x300 μm^2
 - asynchronous
- ► End-Of-Column
 - per-pixel hit signal to EOC
- ▶ 360 dual TDC channels
 - ▶ TDC Bin size $\sim 97\,ps$
- self-triggered operation
 - ► Rate:210MHits/s
 - $4 \times 3.2 \, Gb/s$ serialisers
- ▶ SEE Tolerant
 - ▶ state/config.



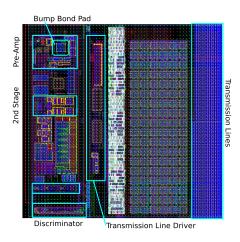


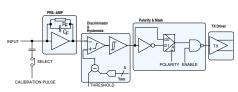


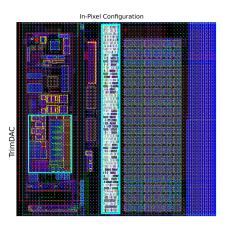


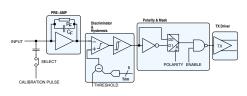

Simplified Pixel Architecture

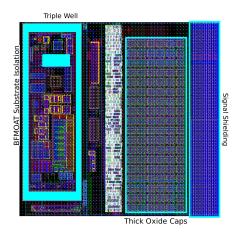
- Gain $\sim 65 \, mV/fC$
- ightharpoonup peaking time $\sim 5\,ns$
- ightharpoonup ENC $<250\,e^-$

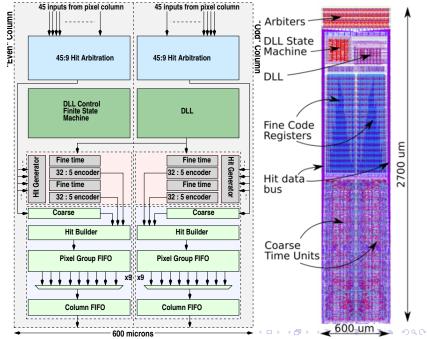

- Polarity control
- Pixel mask
- TX with pre-emphasis

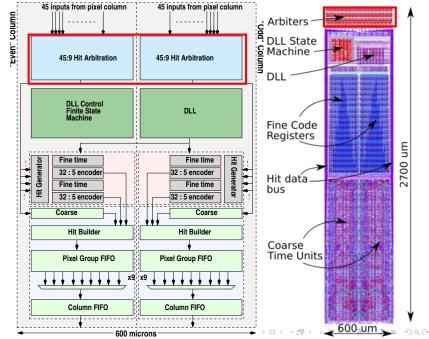

Pixel Layout:

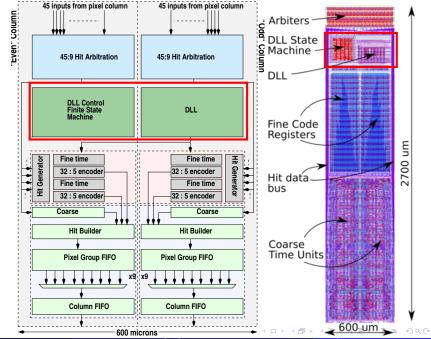

 $300 \times 300 \mu m^2$ cell


Pixel Layout: Signal Path

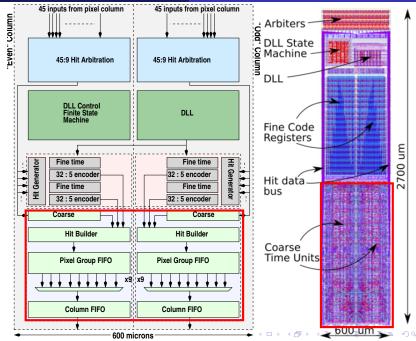

Pixel Layout: Trimming & Configuration

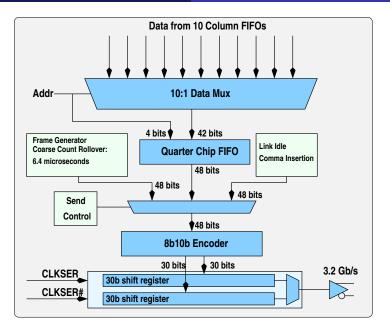

June 2014

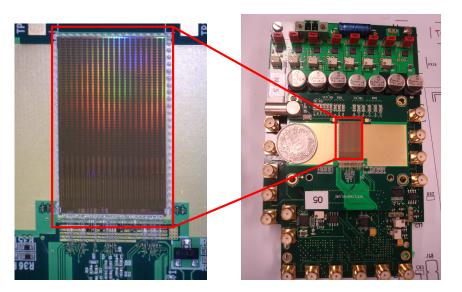

Pixel Layout: Noise Mitigation



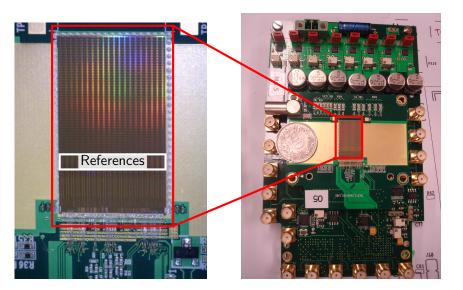

MQ 0.4um 0.4um 0.4um 0.4um 0.4um

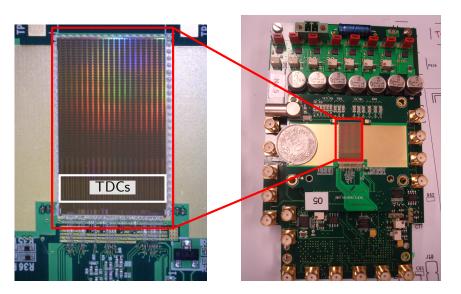

- ► Triple well (input transistor)
- BFMOAT substrate isolation
- signal shielding
- Power supply decoupling

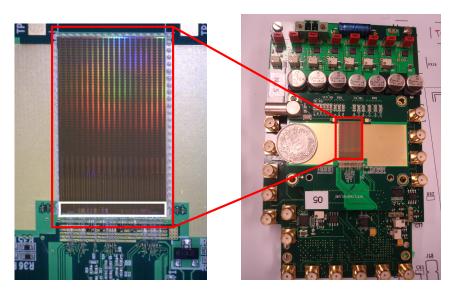







TDCPix Wire Bonded to the Test Card


TDCPix Wire Bonded to the Test Card


TDCPix Wire Bonded to the Test Card

TDCPix Wire Bonded to the Test Card

TDCPix Wire Bonded to the Test Card

Introduction to NA62 and the GigaTracke

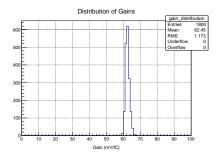
The TDCPix Chip Architecture

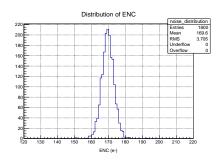
Measured Performance

Pixel Jitter: Test Output

TDC Performance

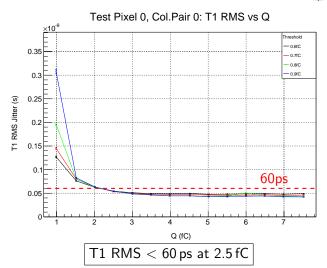
Full Chain Performance


Functionality Tested


Block	Status	Remarks
Configuration	Working	5 chips tested
PLL	Working	3.2 GHz
Serialisers	Working	3.2 Gb/s
Bandgaps	Working	
Temperature Interlock	Working	
Column Biasing	Working	200 DACs
In-Pixel Threshold Trimming	Working	1800 DACs
# of bugs detected	0	

First Working Silicon

Full Pixel Array Gain & ENC Distributions

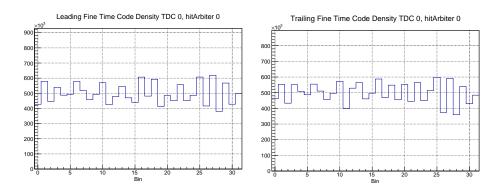

$$<$$
Gain $> = 62 \,\mathrm{mV/fC}$
Spread = $1.1 \,\mathrm{mV/fC}$

$$<$$
ENC $>=170e^{-}$
No sensor

Pixel Jitter: Test Output

nance Pixel Jitter:

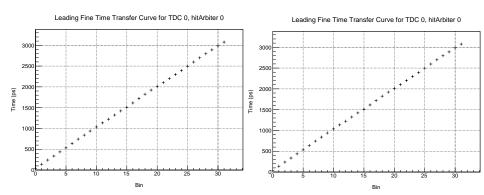
Pixel Jitter: Test Output



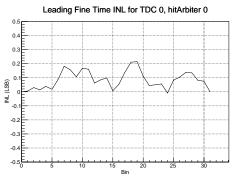
includes:

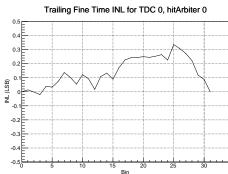
- Test pulse generation
- Test pulse distribution
- ► TX
- transmission line
- RX
- HitArbiter
- EoC Buffering

TDC Performance


TDC Test Input: Code Density Histograms

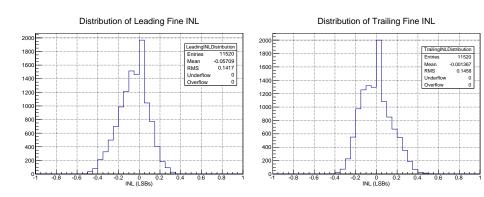
- ▶ 16 million random (unsynchronised) triggers
- bin content gives width estimate


TDC Test Input: Transfer Curves



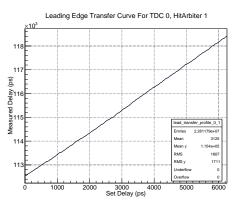
▶ Bin widths give the transfer curve

TDC Test Input: INL



transfer curves give the INLs

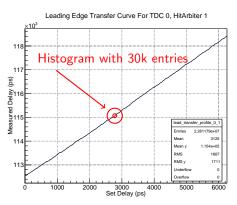
matthew.noy@cern.ch


Leading/Trailing INL: All TDC Channels

RMS INL \sim 0.15 LSBs

TDC Performance

TOT Transfer Curve For TDC 0, HitArbiter 1 14700 14650 14600 14450 3125 Mean y 1.455e+04 14400 RMS 14350 14300 1000 2000 3000 Set Delay (ps) 6000


- Pixel Matrix not involved in measurement
- ► Two clock periods (2*3.125ns)

- ▶ Step: 10 ps
- ▶ 3.10⁴ triggers/pt.

14700

TDC Performance

14650

14600

14500

14500

14500

144500

144500

144500

144500

144500

144500

144500

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

144600

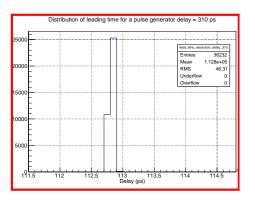
144600

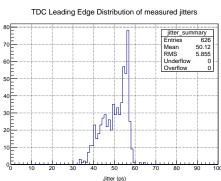
144600

144600

144600

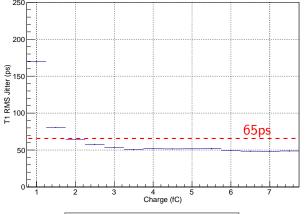
144


TOT Transfer Curve For TDC 0, HitArbiter 1


- Pixel Matrix not involved in measurement
- ► Two clock periods (2*3.125ns)

- ▶ Step: 10 ps
- $ightharpoonup 3.10^4$ triggers/pt.

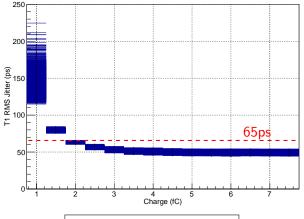
TDC Resolution



- ▶ Resolution (Mode of the RMS dist.) $\sim 58\,ps$
- ightharpoonup clock/pulse generator synchronisation contributes $\sim 30\,ps$ RMS
- contribution from signal distribution in the chip unknown

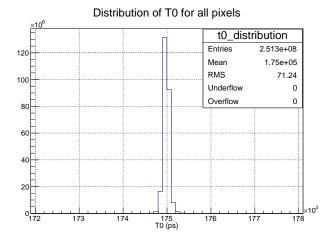
Full Chain Performance

Full Chain Behaviour


- trigger swept through full clk cycle
 - ▶ 32 phases
 - ► Step:100ps
- ▶ 10⁴ triggers per phase
- No sensor present

 $T_1(RMS) < 65 \, ps \, at \, 2.5 \, fC$

Full Chain Behaviour


- trigger swept through full clk cycle
 - ▶ 32 phases
 - ► Step:100ps
- ▶ 10⁴ triggers per phase
- No sensor present

 $T_1(RMS) < 65 \, ps \, at \, 2.5 \, fC$

June 2014, Amsterdam

TimeWalk-Corrected Time Resolution

- No sensor
- No sensor weighting
- Calibration done for every pixel
- $T_0 = T_1 K(Q) * [T_2 T_1]$
- ▶ Q = 1-7.5fC

"Whole Chip" Resolution \sim 72 ps RMS

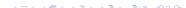
Introduction to NA62 and the GigaTracke

The TDCPix Chip Architecture

Measured Performance

Pixel Jitter: Test Output

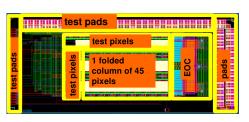
TDC Performance

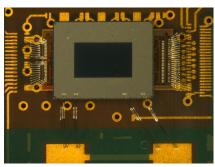

Full Chain Performance

- ▶ NA62: Ultra Rare Kaon decay measurement
 - ightharpoonup huge beam rate ightharpoonup massive background reduction
 - ► GTK Time Tagging <200ps per station

- ▶ NA62: Ultra Rare Kaon decay measurement
 - lacktriangle huge beam rate ightarrow massive background reduction
 - ► GTK Time Tagging <200ps per station
- TDCPix Architecture
 - ▶ 1800 pixel End-of-Column chip
 - ▶ 20mm x 12mm
 - self-triggering architecture
 - ▶ 4 x 3.2Gb/s on-chip serialisers

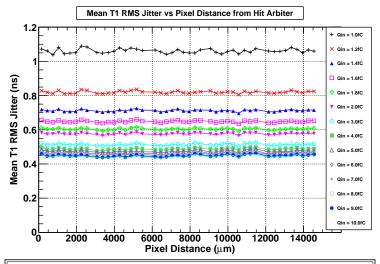
- ▶ NA62: Ultra Rare Kaon decay measurement
 - lacktriangle huge beam rate ightarrow massive background reduction
 - ► GTK Time Tagging <200ps per station
- ► TDCPix Architecture
 - ▶ 1800 pixel End-of-Column chip
 - ▶ 20mm x 12mm
 - self-triggering architecture
 - ► 4 x 3.2Gb/s on-chip serialisers
- ▶ TDCPix Performance is excellent
 - First working silicon
 - Pixel jitter < 60 ps RMS at 2.5fC
 - ► TDC gives <60 ps RMS time resolution
 - ▶ Full chain works as expected < 65 ps RMS at 2.5fC
 - Time Walk Correction Works as expected
 - ▶ "Whole Chip" Resolution ~ 72 ps RMS


Thanks for your attention!!


Backup Slides

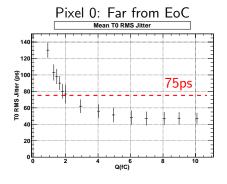
Demonstrator

EoC Chip & Assembly



- ▶ What is the limit of the timing resolution attainable?
- Where does this limit come from?

Summary of Results


Transmission Line Uniformity T_1 RMS Jitter: ASIC

No systematic deterioration of signal quality with distance.

20

RMS T_0 Jitter Vs Q: Assembly (@ 300V) + Laser

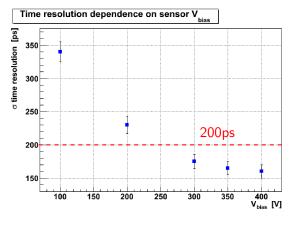
Pixel 44: Close to EoC

Mean TO RMS Jitter

140

120

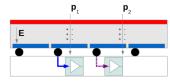
75ps

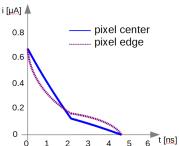

75ps

- ► Full event time reconstruction done
- ► EoC activity doesn't feed through to the pixels

- detector bias = 300 V
- ightharpoonup average case $\sim 75\,ps$ at $2.4\,fC$

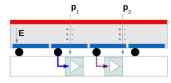
Q(fC)

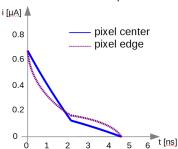

Beam Test: Time Resolution Vs Detector Bias


at $300\,V$ average performance is $175\,ps\,RMS$

M. Fiorini

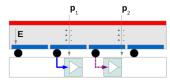
Time Resolution Limits

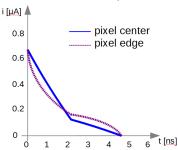

Sensor current pulses


- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps

June 2014

Time Resolution Limits

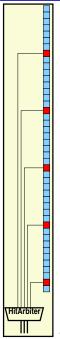

Sensor current pulses

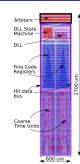

- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps
- Charge straggling also contributes
 - inhomogeneities in charge deposition
 - ▶ adds > 60ps

Time Resolution Limits

Sensor current pulses

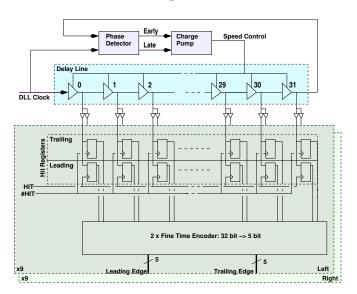
- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps
- Charge straggling also contributes
 - inhomogeneities in charge deposition
 - ► adds > 60ps
- uncorrectable contributions for current sensor

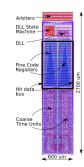

G. Aglieri Rinella

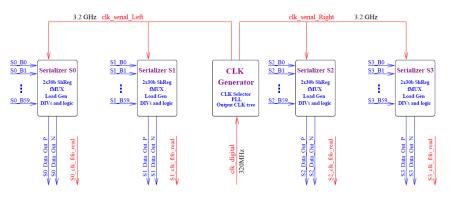


Hit Arbiter

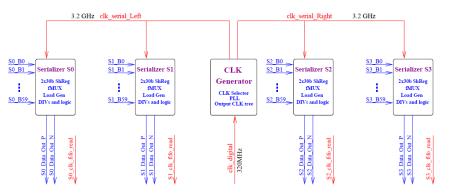
TDC: Hit Arbiter

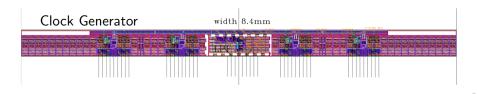

- fully asynchronous
 - timing information preserved
- ▶ 5 pixel + 1 test inputs
- ▶ hit signal
- ▶ 5 bit hit address + 5 bit pileup
- non-adjacent pixels connected to adjacent channels

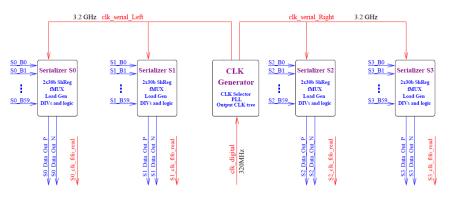


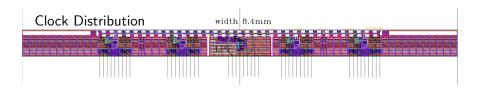

DLL & Hit Registers

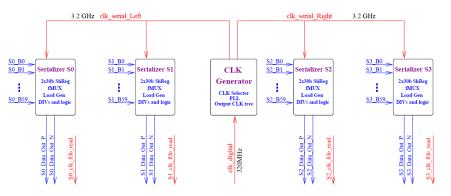
TDC: DLL & Fine Registers

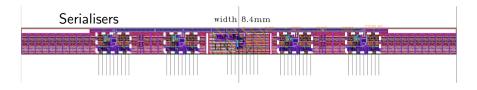


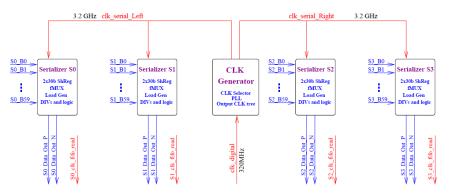


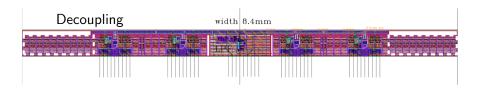

PLL & Serialisers

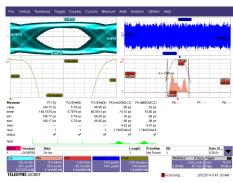




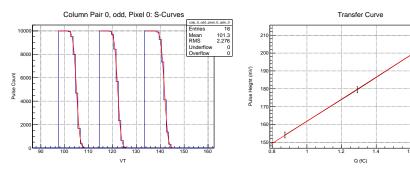








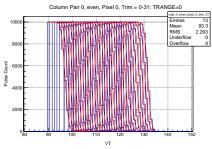
Serial Outputs at 3.2Gb/s

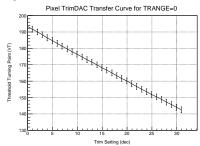


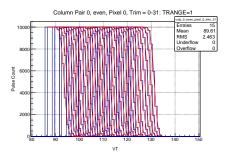
- ► Idle words correct
 - synchronisation works

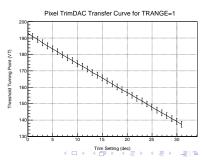
- ► Total Jitter < 150 ps
- ► FPGA GTX recv. lock reliably
- ► DAQ works reliably

Pixel Behaviour

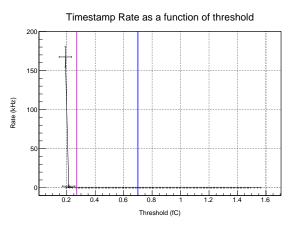

S-Curves \rightarrow Pre-Amp Transfer Function




- Q_{injected} adjusted for CAL DAC gain
- \blacktriangleright Transfer fit \rightarrow discriminator offset and front end gain
- Polarity setup for a hole signal
 - P-on-N sensor (baseline)
 - "electron" polarity works too



Trim and TRANGE Functionality



How low will the threshold go?

- ► All pixels enabled (& trimmed)
- ▶ Pink: minimum threshold $\sim 0.26 \, fC \, (1600 \mathrm{e^-})$
- ightharpoonup Blue: nomimal threshold 0.7 fC

Top Level Test Bench

