Construction and commissioning of the KLOE-2 Inner Tracker

G. Morello on behalf of the KLOE-2 IT group,
Third International Conference on
Technology and Instrumentation in Particle Physics
June 3rd, Amsterdam (NL)

KLOE-2 at DAФNE ф-factory

The KLOE apparatus, consisting of a huge **Drift Chamber** and an **Electromagnetic Calorimeter**working in a **0.5 T** axial magnetic field, has been upgraded with new subdetectors for a new data taking campaign. The required inner tracker performances are:

- 200 μm spatial resolution on the transverse plane and 500 μm along the beam line
- Material budget less than 2% X₀
- 5 kHz/cm² rate capability

The inner tracker is composed of 4 coaxial cylindrical triple-GEMs with

- **700 mm** active length
- Radii between 130 and 205 mm
- X-V stereo readout

Very low mass detector

The electrodes of the IT

- Every layer of the Inner Tracker is a triple-CGEM composed of a cylindrical anode, 3 CGEM and a cylindrical cathode
- The dimensions of the electrodes required a new production technique
- The CERN TE-MPE-EM workshop (Rui de Oliveira) produced large area GEM foils (up to 350 x 700 mm²) using the single-mask technique (first time for an experiment)
- Each GEM foil is divided in 40 HV sectors (1.5 x 70 cm²) on the top side and 4 HV sectors on the bottom side in order to reduce the energy of discharges
- Each cylindrical electrode is realized with the wrapping technique developed at LNF

The readout of the IT

The readout of the IT is a flexible kapton/copper circuit.

The 2-dimensional reconstruction is given by the X strips (parallel to the axis of the CGEM) and V pads connected by vias to a common backplane

GASTONE: the FEE for the IT

- Mixed analog-digital circuit
- Low input equivalent noise, low power consumption and high integrated chip
- 4 blocks:
 - charge sensitive amplifier
 - shaper
 - leading-edge discriminator (programmable threshold)
 - monostable (stretch digital signal for trigger)

Developed by	' INFN Bari	and LNF
--------------	-------------	---------

Sensitivity (pF)	20 mV/fC
Z_{IN}	400 Ω (low frequency)
C_{DET}	1-50 pF
Peaking time	90-200 ns (1-50 pF)
Noise (rms)	800 e ⁻ + 40 e ⁻ /pF
Channels/chip	64
Readout	LVDS/Serial

Quality check

The GEM foils are tested in a N_2 flushed box for humidity reduction (RH below 10%)

Each sector of the foil is supplied with up to 600 V

Discharge rate (O(1) h-1 @ 600 V) and current leaks (<1nA)

are monitored

HV connections are checked to have $R < 2 \Omega$

A complete test takes $\sim 4 h$

Construction details

Three foils are spliced together along the kapton frame

The large electrode is then rolled on a Teflon machined mould, glued and polymerized with the vacuum bag technique

The cylindrical GEM is ready to be extracted from the mould: the very low friction of the Teflon reduces the mechanical tensions on the foil

Assembly and test

The Vertical Insertion System provides the insertion of all the cylindrical electrodes, one into the other, with an accuracy of less than 100 µm over 1 m length

Operational parameters

Gas mixture: Ar:iC₄H₁₀ 90:10

e-/ions pair (3 mm): $10 \pi^{\pm}$, 100 K^{\pm}

(at DAΦNE)

Fields: 1/1.5/1.5/5 kV/cm

GEM voltages: 295/285/280 V

Gain: **O(10⁴)**

IT final assembly

The final assembly of the KLOE-2
Inner Tracker, with the insertion of all the triple-CGEMs one into the other took place in March 2013

IT integration: insertion on the BP

IT integration

Faraday cage completed with a 18 μm shield connected to the PCB end caps

Scintillators for cosmic-ray trigger mounted on a cylindrical rotating support for acquisition on different sectors of the Inner Tracker

IT integration

IT integration

Inner Tracker gas system

- The IT is flushed at 30 l/h
- Filters present along the inlets of each layer
- Isobutane sniffer close to the IT to detect gas leakage
- The flux can be set for each layer and monitor the overpressure of the line
- Gas parameters read on a dedicated PC
- Data transmission to slow control for the implementation of the alarm

HV and temperature slow control

Final HV slow control is being set up A semi-graphical and a HTML interface are foreseen

- 6 probes on the innermost surface of the IT
- 4 probes on the FEE
- 4 probes on the water cooling circuit for the GASTONE boards

First runs: need for calibration

MAGNETIC FIELD

The KLOE-2 magnetic field is orthogonal to the electric fields of the triple-GEMs, introducing two systematic effects: a **shift** $\Delta x(\alpha_L)$ and consequently a **larger spread of the electron cloud.**

Gas: iC₄H₁₀ 10%, Ar 90%, T=290 K, p=1 atm

NON-RADIAL TRACKS

The angle formed by a track and the orthogonal to the cathode influences the reconstruction.

COMBINED EFFECTS

The total contribution of the two effects is simplified in the picture: the electrons are focused or defocused if the angles α_L and β have the same sign

Dedicated runs are scheduled with cosmic-ray muons, w/wo B field and Bhabha scattering events to separately evaluate the two effects

Raw hits from early KLOE-2 runs

Raw hits are grouped in clusters and then processed using a Kalman filter to reconstruct tracks.

Layer 4 at lower gain with respect to lother layers and layer 3 with some HV sectors off.
Gain optimization in progress.

Layer 2: unrolled Read-out reference frame

Summary and outlook

- The Inner Tracker has been completed and installed on DAΦNE Detector commissioning ongoing
- Optimization of the operating parameters
- Calibration and alignment of the detector using the DC track extrapolation
- Monitoring of useful parameters

Spare slides

KLOE experiment

- Huge, transparent Drift Chamber in 5.2 kGauss field of a SC coil
- 2 m outer radius, 25 cm inner radius, 4 m long, He/iC₄H₁₀ gas mixture, all-stereo geometry
- Momentum resolution: $\sigma(p_T)/p_T \sim 0.4\%$ $<\vec{p}_K> \simeq 120 \ MeV$, $<\vec{p}_{\pi}> \simeq 200 \ MeV$ - Spatial resolution: $\sigma_{ro} \simeq 150 \ \mu m$, $\sigma_z \simeq 2 \ mm$

- Pb-Scintillating Fiber Calorimeter with excellent timing performance:

 $\sigma_t = 54 \ ps / \sqrt{E(GeV)} \oplus 100 \ ps$

- Energy resolution:

 $\sigma_E/E = 5.7 \%/\sqrt{E(GeV)}$

- 4 m long, 98% solid angle coverage

GEM: principle of operation

The GEM (Gas Electron Multiplier) [F.Sauli, NIM A386 (1997) 531] is a thin ($50 \mu m$) metal coated kapton foil, perforated by a high density of holes ($70 \mu m$ diameter, pitch of $140 \mu m$) standard photo-lithographic technology.

By applying 400-500 V between the two copper sides, an electric field as high as ~100 kV/cm is produced into the holes which act as multiplication channels for electrons produced in the gas by a ionizing particle.

Gains up to 1000 can be easily reached with a single GEM foil. Higher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils.

A Triple-GEM detector is built by inserting three GEM foils between two planar electrodes, which act as the cathode and the anode.

GEM: principle of operation

- flexible geometry, arbitrary detector shape: rectangular/square, annular, cylindrical ...
- ultra-light structure, very low material budget: $\sim 3\%$ X_0 /detector
- gas multiplication separated from readout stage, arbitrary readout pattern: pad, strips (XY, UV), mixed ...
- high rate capability: > 50 MHz/cm²
- Safe high gains: > 10⁴
- high reliability: discharge free; $P_d < 10^{-12}$ per incoming particle
- rad. hard.: up to 2.2 C/cm² integrated over the whole active area without permanent damages (corresponding to 10 years of operation at LHCb)
- high spatial resolution: down to 70 μm (with analog readout) (COMPASS)
- good time resolution: down to 3 ns (with CF4) (LHCb)

DAQ system

Gastone fe boards

16 links running at 2 Gbit/s

Data from the detector are collected using the front-end **Gastone boards** interconnected to the **GIB Boards**.

Finally, the data are written to the storage disks.

The data are then delivered to the **ROD** using **Optical fibers** connection. A **VME CPU** board collects data from the ROD and sends them to the Farm on-line system through TCP/IP

The R&D of the Inner Tracker

Construction and characterization of a CGEM prototype (test beam 2008) built using 3 GEM foils (**354 x 330** mm²) spliced together. Axial strips (single view).

Construction and characterization of two large planar chambers with the new single-mask photolitographic technique equipped with final X-V readout (test beam 2010).

Construction of **100** x **100** mm² planar chambers equipped with new concept for X-V readout and study of their behaviour in magnetic field.

The R&D of the Inner Tracker

Construction and characterization of a CGEM prototype (test beam 2008) built using 3 GEM foils (354 x 330 mm²) spliced together. Axial strips (single view).

Construction and characterization of two large planar chambers with the new single-mask photolitographic technique equipped with final X-V readout (test beam 2010).

Construction of **100** x **100** mm² planar chambers equipped with new concept for X-V readout and study of their behaviour in magnetic field.

Quality check details

9 GEM foils bad: overetching with discharges, leakage currents, roughly defined sectors 3 foils with high resistance on HV vias connections

GARFIELD Simulations

G. Morello on behalf of KLOE-2 IT group

Test results from ⁹⁰Sr source

Test results from cosmic rays events

Events selected using External Tracking provided by 3 Planar Triple-GEM

Pre-insertion test

