# The AMS-02 Electromagnetic Calorimeter on the International Space Station



## AMS-02: A TeV precision, multipurpose spectrometer

- Search and study of Anti-Matter (anti-helium)
- Indirect search for dark matter (positron/ electron fraction, anti-protons, etc...)
- Study of diffuse gamma rays
- Spectroscopy of cosmic rays (protons, electrons, ions, etc...)



TIPP 2014 - Amsterdam

M.Incagli - INFN Pisa

#### Constraints for a calorimeter in space

- 1. Good energy resolution but limited mass (~0.5 ton):
  - large sampling fraction → stocastic term of ΔE/E
  - minimize leakage → asymptotic constant term of ΔE/E
- 2. Maximal separation between electron (positron) and proton showers:
  - high Z material  $\rightarrow$  maximize the ratio  $X_0/\lambda_{int}$
  - high granularity → sensitive to shower details
- 3. Trigger capabilities:
  - fast active material
- 4. Pointing capabilities (for photons and ECAL-trk matching):
  - high granularity

#### AMS-02 Electromagnetic Calorimeter

A precision, 3-D measurement of the direction and energy of gamma rays and electrons up to 1 TeV



- Pb/scintillating fibers composite structure
  - $\circ$  99 lead plates ~50000 scintillating fibers ( $\phi = 1 \text{ mm}$ )
  - o Volume ratio (Pb/fibers/glue): 59/34/7
- Dimensions: <u>658 × 658 × 166 mm</u>; Weight: 489 kg
- Fibers along x and y view for a 3D shower reconstruction



#### The mechanical frame

 The active part is inserted in a mechanical support structure holding the readout devices (Photo Multipliers - PMTs)



## Reading out the signal

 A group of ~35 fibers is coupled to each of the four cells of a PMT through plastic light guides







### Calibrations: Radiation Length

Measurement of shower longitudinal development for electrons/





Longitudinal shape parametrized by Rossi function.

$$X_0 = 0.98 \pm 0.02$$
 cm



Total thickness  $\sim 17 X_0$ 

Energy containment of ~ 80% for 1 TeV electrons.

## Linearity and Energy Resolution



Good Linearity within 1% in the range 6-250 GeV

Good Resolution:

$$\frac{\sigma(E)}{E} = \frac{(10.4 \pm 0.2)\%}{\sqrt{E}} + (1.4 \pm 0.1)\%$$

10 Gev: ~ 4.7% 100 Gev: ~ 2.5% 1000 GeV: ~ 1.7%



TIPP 2014 - Amsterdam M.Incagli - INFN Pisa 11

#### Angular Resolution

- The angular resolution is defined by the three-dimensional angular opening with respect to the incoming beam that contains 68% of the events.
- It has been measured on electron data by comparing the track extrapolated by the tracker with the shower axis defined by ECAL



Calibrations: equalization and temperature



Cell equalization performed using proton and Helium Minimum Ionizing Particles (MIPs)





A dependence between MIP Most Probable Value (MPV = gain) and temperature was observed in flight data.

The PMT gain is anti-correlated with temperature and it changes by ~1% each 4degrees

A Temperature correction is applied offline

## In flight calibration checks

Check parameter stability:

1) ADC pedestals: ~0.1% (recalculated each 45 minutes)

- 2) Light attenuation length—
- 3) Linearity of electronics vs time





#### ECAL Trigger: hardware implementation



#### **ANALOG SECTION:**

- Each PMT signal is digitized at the Front End level
- Digital signals only used for trigger decision
- 108 Hits recorded in the x-view and 108 in the y-view

#### DIGITAL SECTION: ETRG BOARD

- Collects "dynode over threshold" signals related to one projection(X or Y)
- Performs trigger algorithm and sends the final decision to the main AMS Trigger board

#### ECAL Trigger: In-orbit performances



TRIGGER RATE – the photon trigger is ~10% of total Level 1 trigger, perfectly compatible with the design specification!



#### Proton rejection

Protons/positrons ratio: 103-104



#### 1. High granularity:

- Different shape and development of hadronic shower with respect to electromagnetic one.
- 2. High resolution:
  - Mismatch between the ECAL energy and the tracker momentum for hadronic showers.

### Proton rejection (1)

- Classification procedure done using Multi Variate Analysis (MVA) techniques
- Boosted Decision Tree (BDT) using ecal variables:
  - energy in each layer, longitudinal shape, lateral shape, etc....
- electrons and protons used for the training have been selected using the sign of the Tracker and the TRD information



### Proton rejection (2)



#### Positron Fraction



Bin width defined by Ecal Energy resolution, at energies E<100GeV and by statistics at larger energies

### Photon physics in AMS using ECAL

- Above Ecal only 0.6 X<sub>0</sub> → ~63% of the photons reach ECAL without interactions
- ECAL triggers on these photons with efficiency ~100% at E>5GeV
- ECAL pointing capabilities ~0.5° at E=100 GeV
  - not a pointing device, but some angular information to correlate with known sources
- High energy measured with ~2% resolution (compare with ~10%)
  - useful for "line search" in photon spectrum
- Major limitation in physics capabilities: small angular acceptance (factor 20 less than Fermi)

#### Photon identification

- Photons identified with a BDT technique similar to electrons
- Photon BDT uses information from all the detector: shower shape and presence of hits above ECAL





#### Pointing Accurancy: Vela [3,10] GeV



Standard deviation of galactic coordinates includes error of position and orientation of AMS

#### High energy photons from galactic center



#### A 1.7 TeV photon



Particle TofEcal No 0 Id=64 p= -4e+07± 4e+21 M=4.96e+07± 5e+21 θ=0.42 φ=2.94 Q= 4 β=-0.628± 0.017/ -0.63/ βh= 0.000± 0.000 θ\_M -53.7° Coo=(50.33,11.02,-135.98) LT -1.00 θ\_G 2.54 φ\_G 3.06 EcalShower No 0 NHits 525 Energy=1.62e+03± 84 θ=2.88 φ=-1.15 Coo=(-6.94,-8.64,-153.88) χ²= 2.28 Asymm=-0.07 Leak\_\_\_\_\_\_=(0.00,0.26,0.00,-0.00,0.00,0.00,0.00,0.00,0.00) Max=12.00



- Good Shower in Ecal
- Only few "backsplash" hits not correlated with the shower axis

#### The highest energy AMS ECAL photon



TIPP 2014 - Amsterdam M.Incagli - INFN Pisa 27

#### Conclusions

- After 3 years of data taking, Ecal is performing according to expectations
- Energy scale and angular resolution checked with flight data → no degradation effects observed
- ECAL energy resolution and ep identification are the key for AMS scientific results on electron/positron measurements
- Although not in the AMS mainstream, high energy photon physics is also possible thanks to ECAL energy resolution, pointing capabilities and standalone trigger