POSSuMUS:¹ A Position Sensitive Scintillating Muon-SiPM Detector

Alexander Ruschke 04.06.2014 LMU München, LS Schaile Tipp-2014 Amsterdam

Deutsche Forschungsgemeinschaft

DFG

¹Latin: "We can "

Outline

- 1. detector concept of POSSuMUS
- 2. SiPM & gain stabilization
- 3. results of a prototype detector
- 4. summary and outlook

POSSuMUS Detector

Concept of POSSuMUS

Detector-Concept

- t, tj
- BC 400 plastic scintillator
- BCF-92 Wave-Length-Shifting-Fiber
- position in y → amount of scintillation light is position dependent due to geometric shape

$$y \propto \frac{q_1}{q_1 + q_2}$$
 (light yield ratio)

 \bullet position in $x \to by$ measurement of time difference

 $x~\propto~t_{\rm I}-t_{r}$ (propagation time of light)

Tipp-2014 Amsterdam

- $q_i \triangleq$ amount of light in scintillator
- trapezoids are optically insulated
- light collection by WLS-Fiber
- Iight detection with SiPMs
 Alexander Ruschke

Silicon Photo-Multiplier (SiPM) used for light detection

Silicon Photomultiplier (SiPM)

SiPM 100 C (active area 3x3 mm²⁾

L	-		-	
		00		

- Hamamatsu SiPM-devices
- active area 3x3 mm²
- pixel size : $(100 \ \mu m)^2$

and pixel numbers: 100 / mm²

- SiPM: array of Avalanche Photo Diodes APD: work in Geiger mode
- advantages:
 - low V_{bias} O (100 V)
 - very fast timing (~100 ps)
 - insensitive to magnetic field
 - photon detection of small light yields (1 – O(100)) photons

Determination of U_{bd}

- determination of SiPM gain, by distance of reference peak (0) to peaks (i) at constant temperature ↔ U_{over} (T) = U_{bias} – U_{bd}(T)
- determination of breakdown voltage U_{bd}: interception point of lines with x-axis
- about 50 SiPMs are characterized
- U_{bd} : temperature dependent

Temperature Dependence

• semiconductor devices are temperature dependent $\leftrightarrow U_{bd}(T) \leftrightarrow gain(T) = U_{bias} - U_{bd}(T)$

- determination of U_{bd} for different temperatures \rightarrow correction factor for stabilization
- measured temperature coefficient for SiPM (3x3 mm² 100 C):

60.8 mV / °K

Alexander Ruschke

Tipp-2014 Amsterdam

Temperature Dependence

- gain determination (without LED):
 - triggering on dark rate events
 - peak to peak distance proportional to gain
- change of temperature leads to change of gain
- \rightarrow pulse-height information of SiPM signal is varying with 10% / $^{\circ}\text{K}$

Alexander Ruschke

Tipp-2014 Amsterdam

Gain-Stabilization for SiPMs

goal : SiPM gain is independent to temperature changes

- temperature monitoring directly at SiPM → temperature changes → voltage adjustment → constant gain for light measurement with SiPM
- digital potentiometer is capable to adjust voltages independently (communication via I²C -Bus)
- 64 channel modular voltage source has been developed for constant gain conditions

Alexander Ruschke

Tipp-2014 Amsterdam

Gain Stabilization

- monitoring every two hours
- automated adjustment of U_{bias} by remotely controllable voltage divider

 \rightarrow no temperature dependence of SiPM gain accuracy 2%

Alexander Ruschke

Tipp-2014 Amsterdam

Prototype detector

POSSuMUS Prototype

detector characteristics:

- trapezoid wrapped in **diffuse** reflecting Tyvek
- two WLS-fibers of ø 1.5 mm per trapezoid
- two 3x3 mm² SiPMs per fiber
- \rightarrow 8 SiPMs gain-stabilized

data acquisition:

- triggering on cosmic muons with two 3-foldsegmented trigger scintillators
- TDC-QDC-readout for pulse-height and timing information

Tipp-2014 Amsterdam

Light Spectra

SiPM-response is Gaussian-like
 → convoluted Landau and Gaussian distribution

Alexander Ruschke

Tipp-2014 Amsterdam

Position Dependence of Light Yield

All channels of POSSuMUS work fine

Alexander Ruschke

Tipp-2014 Amsterdam

Position Sensitivity and Spatial Resolution

Alexander Ruschke

Tipp-2014 Amsterdam

¹⁷ 04.06.2014

Inclined tracks

Tipp-2014 Amsterdam

Summary

- POSSuMUS-detector
 - trapezoidal geometry \rightarrow position sensitivity in y by light yield ratio
 - propagation time of light \rightarrow position sensitivity in x by time difference
- Silicon Photomultiplier (SiPM)
 - Avalanche Photo Diode, temperature dependent
 - modular voltage source (64 channels) \rightarrow gain stabilization works
- results for the prototype detector
 - light output 60 photons per muon event
 - spatial resolution in y : due to light yield ratio is 15 mm
 - spatial resolution in x : due to propagation time of light is 10 cm
 - efficiency of detector is 97 %
 - POSSuMUS can be applied to **vertical** and **inclined** tracks

Thank you !

Backup

Light yield per channel

- most probable value of Landau-Gauss- distribution:
 ↔ detected light yield up to
 - 30 photons per fiber
 - for **II** trigger positions
- good position sensitivity for fibers at thick side of each trapezoid
- almost no position sensitivity for channel at thin side
- detector efficiency per channel:
- <u>criterion</u> : at least <u>one</u> detected photon
- detector efficiency ~ 97%
- efficiency drop for fibers at thick site when muon on thin site

Tipp-2014 Amsterdam

04.06.2014

Spatial Resolution in x

- (10 mm)² trigger area
- time difference: t = (x / c) n_{BC400} expected: t_{mean} (Pos 1) = (0.03 ± 1.3) ns 0.63 ns

$$\frac{(POS T) - (0.03 \pm 1.3) \text{ IIS}}{0.63 \text{ ns}}$$

$$\frac{(POS 0) = (0.69 \pm 1.3) \text{ ns}}{0.63 \text{ ns}}$$

• resolving the x-direction is possible

 resolution is limited by readout electronics (FADC with timing resolution of 0.5 ns) Alexander Ruschke Tipp-2014 Amsterdam