

Scintillating Fiber Detector for the Beam Loss Proton Measurements at J-PARC Linac

KONSTANTINOVA Olga A.,* MARUTA Tomofumi* *High Energy Accelerator Research Organization SAKO Hiroyuki**, MIURA Akihiko** **Japan Atomic Research Agency

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - GEANT4 simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - GEANT4 simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

J-PARC Linac

L₃BT

H ⁻ beam	Current operation	
Power	13.3 kW (220 kW at RCS))	
Pulse	600 μsec at 25 Hz	
Energy	181 MeV	
Current	15 mA (peak)	
Loss	maximum ~ a few 0.1 mSv/h*	
*Required beam loss level < 0.1 W / m		

RCS (Rapid-Cycling Synchrotron)

Injection Point to RCS

DTL Drift Tube Linac

SDTL Separated-type DTL

ACS Annular-Coupled Structure linac

L3BT Linac-to-3GeV synchrotron Beam

Transport

Front End=IS+LEBT+RFQ+MEBT1

IS Ion Source
LEBT Low Energy Beam Transport

RFQ Radio-Frequency Quadruple Linac MEBT Medium-Energy Beam Transport

BM1

Introduction and motivation

Significant beam loss issue In the J-PARC linac

due to the high intensity H- beam, significant beam loss has been observed at the beam line section called ACS (Annular-Coupled Structure). The loss is mainly due to a proton which is produced due to the double electron stripping of the H- beam by the residual gas inside the titanium beam pipe.

- High beam loss and radiation level (~ a few 0.1 mSv/h) observed in ACS at 7.2kW operation
- Beam loss measurement at SDTL is hard due to background X-ray from RF cavities

Measurements at J-PARC Linac

GOAL:

To measure the beam loss rate

To understand the beam loss mechanism

Introduction and motivation

Methods

Experimental: measurement using fiber detector

- Count the number of H+ from H⁰ (residual gas interaction)
- One proton corresponds to one lost H⁻
- Tracking (a charged particle from the beam duct)
- Time-of-flight measurement
- Evaluate absolute beam loss rates by counting H+ tracks

Simulation: proof the experimental data

Physical explanation of the beam loss

Pressure at the ion pump SDTL 14B

Vacuum pressure dependence of beam loss at ACS

Beam loss signal level with a proportional counter is proportional to the residual gas pressure

Strongly suggest the beam loss is due to H⁰ produced by H⁻ interacted with residual gas H⁰ was observed with a wire scanner monitor at the straight beam dump with bending magnet

on.

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - **GEANT4** simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

PRINCIPLE & MEASUREMENT

Measurement principal

Count the number of H⁺ from H⁰ (residual gas interaction)

- One H⁺ corresponds to one lost H⁻
- Reconstruct a track passing through all fiber planes
- Energy measurement with time of flight
- To cope with high rate, use fibers

By fiber positions, emission point can be measured!

O. A. Konstantinova Scintillating Fiber Detector for the Beam Loss Proton Measurements at J-PARC Linac

4 June 2014

Scintillation fiber detector

Plastic fiber scintillators

- A few nsec pulse width
- High-rate capability
- Timing resolution (~ 600 psec)

64ch Multi-Anode PMT Hamamatsu H8500C

- 2 fiber planes (16 fibers x2) are connected
- Gain~1.5x10⁶
- Q.E.~24%

Experimental setup

Installed on Sep. 2012

upstream mover (H0,1,V0,1) downstream mover (H2,3,V2,3)

Each mover can move detector positions

- horizontally (50~700mm),
- vertically (-600~ 600 mm) with stepping motors

Since Oct 2012, we measure

X(up) = 0.100,200,300,350,400 mmX(down) = 0-600 mm

Physical basis of the measurement

Only charged particles can be detected by fiber planes

- Insensitive to neutrons
 - In rare case, fast neutrons might interact in one of the fiber planes and produce protons
- Insensitive to gamma-rays
- Probability of nuclear interaction of proton in Ti duct or fibers is negligible
 - In 0.2cm Ti duct: Exp(-0.2/17.6):(17.6cm=nuclear interaction length)
 - In 1.6cm fiber (4plane): Exp(-1.6/56.7),
 - Prob. of high-energy gamma-ray to produce e+e-: Exp(-1.6/42.4)
- Electron can be rejected with time-of-flight from protons
 - Electron energy threshold = 2.9 MeV (in 4 fiber planes)

Essentially, only protons from H- can be detected!

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - GEANT4 simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

WHAT DID WE GET?

Track reconstruction

Projection of a line connecting hits in H0 and H3 onto H1 and H2 (both x-z and t-z planes)

- Residuals have peaks
 - > Charged tracks detection

Time-of-flight distribution

Require hits in H0,H1,H2,H3,V0, V1,V2

χ² cuts in z-x track and z-y tracks

Beam loss rate (1)

Proton spatial density per beam pulse

$$\rho(\theta_x) = \frac{dN}{d\Omega}$$

O. A. Konstantinova Scintillating Fiber Detector for the Be Measurements at J-PARC Linac

Number of protons per beam pulse

$$N = \frac{N_{track}}{N_{beam}} \cdot \frac{N_{trigger}}{N_{DAQ}}$$

N_{track}: #reconstructed proton tracks

N_{beam}: #beam pulse

N_{trigger}: #triggers in a beam pulse N_{DAQ}: #triggers taken by DAQ **Trigger = coincidence of dynode signals of 4 PMTs**

N = 2.5e + 13

Estimation from gas pressure and ionization cross section = 2.7e-8

x _u (mm)	dN/dz	H+/H-
100	316538	1.27e-8
200	180189	7.21e-9
300	441681	1.77e-8
350	211315	8.45e-9
400	180407	7.22e-9

Beam loss rate (2)

Z-dependence of the beam loss

Theta-dependence of the mean energy

Measurements in upstream positions ranges 2~16 m

TIPP'14

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - GEANT4 simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

HOW CAN WE CHECK?

GEANT4 simulation

Simulation from SDTL to 1st Bend magnet at L3BT

- The total length of 250m
- Beam ducts, RF cavities, and Q magnets
- Inside the ducts: N² gas of 10⁻⁵ Pa

$$H^-$$
–(gas) \rightarrow H^0 –(duct) \rightarrow H^+

Initial phase space distributions of H⁻ are generated to reproduce Twiss parameters in Trace3D simulation at the entrance of SDTL

Since H⁻/H⁰ was undefined in Geant4, we implemented C++ classes for that

Simulation of this part

We have not included space-charge effects

To RCS

Simulated proton distributions outside the beam duct

- Emission polar angle distribution (with respect to the beam axis) has peak around 6 degrees.
- Increase of kinetic energy up to z=150m is due to 181 MeV H⁻ accelerated beam.
- Broad energy distribution

Simulated energy distribution

- Introduction and motivation
 - J-PARC Linac
 - Physical explanation of the beam loss
- Experimental setup
 - Measurement principal
 - Scintillation fiber detector
 - Theoretical basis of the measurement
- Experimental results
 - Track reconstruction
 - Time-of-flight distribution
 - Beam loss rate
- Simulation outline
 - GEANT4 simulation
 - Simulated proton distributions
- Summary and prospect
 - Results comparison

WHAT DO WE LEARN?

Results

comparison

Theta-dependence of the beam loss

Theta-dependence of the mean energy

ପp/Np

What do we learn?

- Scintillation fiber detector developed for beam loss measurement tested at J-PARC Linac
- Clear charged particle track signals of protons observed
- Quantitative loss rate has been measured for the first time at J-PARC Linac (1.8~3.2·10⁵, [proton / beam pulse])
- Measured H⁺/H⁻ ratio of 0.7~1.8 ·10⁻⁸ is close to the estimation from residual gas interaction rate of 2.7 ·10⁻⁸
- Theta distribution peak at 6 deg. Is reproduced by simulation
- Measured mean proton energy is 80~120 MeV (~90 MeV simulated) → consistent

Any other possible improvements?

- Acceptance and efficiency corrections using simulations
- Evaluation of radiation damage for fibers

Prospects

Since J-PARC Linac has been upgraded from 181 MeV to 400 MeV, we are planning to restart the proton measurements from October 2014

TJPP'14

International Conference on Technology and Instrumentation in Particle Physics

2 - 6 June 2014 / Amsterdam, The Netherlands

Dank u voor uw aandacht!

Backup slides

The simulation reproduce both H⁻ and H⁰

- Mass: 939.294 MeV/c² (H⁻), 938.783 MeV/c² (H⁰)
- Lorentz stripping is not defined
- Stripping cross sections: $(H^- + X \rightarrow H^0 + e^- + A)$, s $(H^0 \rightarrow H^+ + e^-)$ defined based on Refs^{*1,*2}

*1: R.C. Webber and C. Hojvat, IEEE Transaction on Nuclear Science, Vol. NS-26. fractions to the theoretical curves.
*2: G.H. Gillespie, Phys. Rev. A16 (1997) 943.

Trigger

Use of dynode signals of 4 PMT's

- The PMT (H8500C) is 64-ch multi-anode PMT
- PMT dynode signals are "analog sum" of individual anode signals
- By taking AND of dynode signals of PMT1(H0,H1),PMT2(V0,V1),PMT3(H2,H3), and PMT4(V2) trigger signal is defined.
 - Used for start timing of time measurement (TDC), and gate signal for charge measurement (QDC)
- Pulse-by-pulse timing and charge measurement

Data

acquisition system

- Long signal and HV cables (~20m) from the accelerator tunnel to electronics crates in Klystron Gallery
- Charge of raw signals measured with QDCs (CAEN V792)
- Timing of discriminated signals measured with TDCs (CAENV785)
- Data collected with a VME controller (GEFunac XVB601)
 - 25Hz data acquisition rate

H⁻ interaction position vs H⁰ hit position

- H⁰ generated by H⁻ interacted with remnant gas collide with the beam duct at 20-40 m downstream from the interaction point
- The reason of more upstream interactions are due to decrease of, H-→H⁰ cross section as a function energy
- At the 3 connection points of smaller to larger ducts, loss is small
- Protons, neutrons, electrons and positrons are produced from H^o interaction with the duct
- Protons and neutrons are produced most

