

Close Cathode Chamber: cost efficient and lightweight detector for tracking applications

D. Varga, G. Hamar Wigner RCP, Budapest

Outline

- Motivation: small material budget, economic tracking station for the ALICE VHMPID HPTD
- Asymmetric MWPC: an old idea revived
- Close Cathode Chamber: insensitivity to cathode planarity error
- Practical issues: large size, dead zones, ...
- Applications: HPTD, cosmic muon detection
- Hybrids: photon detection, GEM QA, ...

Asymmetric MWPC outline An old idea revived – predecessor of MSGC-s

Fig. 1. Schematic of the cross-section of the asymmetric wire chamber.

NIMA 648 (2011) 648.

G. Charpak, I. Crotty, Y. Giomataris, L. Ropelewski, L. Williams NIMA 346 (1994) 506.

Field lines: closed among wires

 Field wires Sense wires
 Actually inspired by MPGD-s – amplification independent of readout structure

Gain dependence on baseplate (grounded cathode) planarity

- Direct measurement with inclined wire plane
- No dependence at given FW voltage reachable
- Note field wires on negative potential!
 NIM A 648 (2011) 163

Implications for advantages

- No need for a precisely flat baseplate: low material budget, simplified construction
- No sparking, unlike some MPGD-s
- One can go closer to the baseplate ("Close Cathode Chamber") with the wires (1.5 – 0.8mm)
- Good signal coupling (60%) to segmented baseplate but...
- ... where do we pay for the reduced mechanical tolerances of the baseplate?

Wire positioning becomes critical

• FW horizontal and SW vertical are most sensitive (solved by support design)

Construction: wire positioning and fixing

- Laser engraved plastic wire support bars
- Wire tension held by baseplate! No frame needed

Construction: towards larger sizes

- Introduction of support pillars and spacers
- 50cm by 100cm unit weighs less than 2kg!

NIM A 698 (2013) 11

Dead zones at spacers

• Reduced width of dead zones because field lines end up on FW and not on baseplate / cathode

NIM A 648 (2011) 163

Direct demonstration of insensitivity to baseplate / cathode bulging

Proposed application: HPTD

- Component of ALICE VHMPID upgrade project
- CCC proposed as trigger (L0, L1) and tracking
- VHMPID postponed to LS3 in favour of more concentrated upgrades

NIMA 639 (2011) 274. Nucl.Phys. Proc. Supp. 197 (2009) 296

CERN PS beam test

 Various HPTD elements for performance validation

NIM A 698 (2013) 11

Application as cosmic muon tracking

 Two dimensional readout (pads and FW), triggering on summed SW signal – standalone system

pacer Steel Columns

Tomographic cosmic tracking station

• Multiple scattering strength map for various samples

Hybrid: GEM + CCC for R&D and QA purposes

- Old concept with MWPC
- Possibility of testing single GEM layers

TCPD hybrid: TGEM + CCC for UV detection

- Complete Cherenkov ring with 20cm TGEM
- Note it has advantages from both worlds: high detection efficiency without sparks

TGEM high resolution UV sensitivity scanning (Leopard)

- CCC as booster stage for TGEM
- Sensitive to single electrons by itself! (see right panel)

NIMA 694 (2012) 16, see talk by G. Hamar on Monday D. Varga TIPP2014

Conclusions

- CCC concept: some features of MPGD-s help improving the classical MWPC-s
- Low material budget, easy and cheap construction
- Mechanical resistance enables out-of-the-lab applications
- Proved to be an efficient gain booster in MPGD hybrids, both as detector and as R&D tool

Backup slides

Efficiency and timing

- Full efficiency; wire groups for rough position information
- Trigger formation time compatible with expectation and fulfilling ALICE L0 requirement

Position resolution

- "Discriminated" or "Analog" readout mode
- Note that analog readout of FW does make sense

Discriminated →

Analog -

2mm strips (pads) 4mm wire spacing Gassiplex readout

