Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS

K. Matsuoka (KMI, Nagoya Univ.) for the Belle II PID group
TOP (Time Of Propagation) counter

- A novel Ring Imaging Cherenkov detector for PID in Belle II
 - π efficiency > 95% and K fake rate < 5% for < 3 GeV/c

Cherenkov photons generated in the quartz bar travel in the bar as they are totally reflected on the quartz/air boundaries.

To identify K/π, measure TOP of ~20 photons with a time resolution < 50 ps (as well as TOF).
Key of the TOP counter

- The Cherenkov ‘ring’ image has to propagate undistorted along the bar.
 - Polished quartz bar with smooth and parallel surfaces
- Distinguish TOP difference of ~100 ps between K and π.
 - MCP (Micro Channel Plate) PMT and readout electronics with time resolution < 50 ps.

Succeeded in developing each component.

Integrate them and confirm the performance of the TOP counter.
Quartz bar

- The quality of Cherenkov ring image has to be maintained after \(O(100)\) reflections on the quartz surface.

Requirements (for the largest surfaces)

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1250 ± 0.50 mm</td>
</tr>
<tr>
<td>Width</td>
<td>450 ± 0.15 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>20 ± 0.10 mm</td>
</tr>
<tr>
<td>Flatness</td>
<td>< 6.3 (\mu)m</td>
</tr>
<tr>
<td>Perpendicularity</td>
<td>< 20 arcsec</td>
</tr>
<tr>
<td>Parallelism</td>
<td>< 4 arcsec</td>
</tr>
<tr>
<td>Roughness</td>
<td>< 5 Å (RMS)</td>
</tr>
</tbody>
</table>

Internal surface reflectance > 99.90%
Bulk transmittance > 98.5%/m
MCP-PMT (Micro Channel Plate PMT)

- **Square shape** to cover the bar edge with small dead region.
- **Enough gain** (> 5×10^5 in 1.5 T) to detect single photon
- **Transit Time Spread (TTS)** < 40 ps
- **QE ~28%** at λ 380 nm with NaKSBcCs photocathode

Image Description

- **Photocathode**:
 - 2 MCPs
 - 4 x 4 anodes

- **MCP-PMT** dimensions: 23 mm

- **Transit Time Spread (TTS)**: 40.0 ps

- **QE Plot**

- **Talk by T. Yonekura (I.d Photon, Session 2)**
Readout electronics for Belle II

- Waveform-sampling ASIC (IRS) being developed at Hawaii Univ.
 - Multi-G sample / sec to measure the fast MCP-PMT waveform

(Cross-section)

IRS3B for the beam test

Front-end readout with 8 PMTs

FPGA (SPARTAN-6)

Detail \(\rightarrow\) Talk by M. Andrew (III.a FE & ASICs, Session 1)
Backup readout electronics for the beam test

- Front-end: CFD (constant fraction discriminator) board
- Back-end: VME TDC (CAEN V1290A) … time resolution ~ 20 ps

16 outputs of each PMT were merged into 4 at the PMT socket to reduce the number of channels (little impact on the PID performance)
Beam test at LEPS (Laser Electron Photon beamline at SPring-8)

- Evaluate the performance of the TOP counter with the 2 GeV/c \(e^+\) beam at LEPS with both ASIC and CFD.

- Coincidence of the 4 triggers
 - Beam fluctuation \(~1.5\) mrad
- Trigger rate \(~10\) Hz
- \(e^+\) momentum measured by the LEPS spectrometer
- EM shower cut by requiring \(N_{\text{TOF}} = 1\)
Drift chamber

Front-end in the back sheet

TOP counter

TOF counters
Beam timing

- Used the accelerator RF clock to obtain the beam timing (t_0).
- Checked the t_0 resolution with a Cherenkov timing counter.

Cherenkov timing counter (10 mm ϕ quartz + MCP-PMT)

Time resolution: ≈ 23 ps

$\sigma = 37.9$ ps

t_0 resolution: ≈ 30 ps
Distribution of time of propagation

- Height of each peak →
 - Quartz surface reflectance, transmittance
 - QE and its angle/polarization dependence

- Width of each peak →
 - Chromatic dispersion
 - MCP-PMT timing resolution

- Tail of each peak →
 - MCP-PMT (bounce on MCP surface, x-talk)

All well understood
Cherenkov image (CFD readout)

Data

PDF

Good agreement
There are dead channels (90/512) due to some problems.
Beam correlated EM shower and uncorrelated background also have to be understood since they affect the TOP performance.

ASIC readout

- MC (no background)
- MC (with background)
- Data (IRS)

CFD readout

- 50 ns window
- 40 ns window
- Bad channels are removed
- Tail by EM shower from the upstream counters and in the quartz
- Peak shift by uncorrelated background

Preliminary

<table>
<thead>
<tr>
<th>Data (IRS)</th>
<th>MC (no background)</th>
<th>MC (with background)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>500000</td>
<td>500000</td>
</tr>
<tr>
<td>Mean</td>
<td>17.27</td>
<td>17.27</td>
</tr>
<tr>
<td>RMS</td>
<td>4.499</td>
<td>4.499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data (CFD)</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>100000</td>
</tr>
<tr>
<td>Mean</td>
<td>32.64</td>
</tr>
<tr>
<td>RMS</td>
<td>8.603</td>
</tr>
</tbody>
</table>
Event by event reconstruction (CFD)

Reconstructed β

Preliminary

<table>
<thead>
<tr>
<th></th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>16471</td>
</tr>
<tr>
<td>Mean</td>
<td>1.00</td>
</tr>
<tr>
<td>RMS</td>
<td>0.006</td>
</tr>
</tbody>
</table>

$\beta_{\text{mean}} = 1.00$

$\beta_{\text{RMS}} = 0.006$

PID by the likelihood ratio of 2 GeV/c e^+ ($\beta=1$) to 3 GeV/c K ($\beta=0.987$)

Fake rate = 6.2%

Obtained the TOP counter performance as expected.
TOP counter is a novel Ring Imaging Cherenkov detector for K/π identification in Belle II.
- Polished quartz bar as a radiator and propagator
- MCP-PMT and readout electronics of good time resolution (< 50 ps)

Constructed a prototype TOP counter (almost the same design as the final one) and tested it with the 2 GeV/c e^+ beam at LEPS.
- A beautiful pattern of the Cherenkov image was obtained as expected.
- Understood the TOP optics and MCP-PMT performance.
- Succeeded in evaluating the PID performance.
 - The result was consistent with the MC simulation.