

3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP2014) 2-6 June 2014 Amsterdam (Netherlands)

The CMS Electromagnetic Calorimeter: lessons learned during LHC run 1, overview and future projections

- 1. Introduction
- 2. The CMS ECAL
- 3. Energy measurement clustering, monitoring, calibration
- 4. Energy resolution
- 5. Photon ID
- 6. Application to $H\rightarrow\gamma\gamma$ analysis
- 7. Perspectives for the future

Arabella Martelli - Università e INFN Milano-Bicocca (for the CMS collaboration)

H->YY - The ECAL benchmark design

- ▶ H->yy: most sensitive channel at mass lower than ~130 GeV
 - > Small BR with very clean signature:

▼ Fundamental to control:

- ▶ Invariant mass resolution => Energy and position resolution
- ▶ Background rejection => π^0/γ separation

- ▶ Electron resolution driven by ECAL for E > 20GeV
- ▶ Electron $|\eta_{max}|$ > 1.5 for half of Z->ee events

ECAL REQUIREMENTS:

- ▶ Good resolution and efficiency up to $|\eta|<2.5$
- granularity, trigger capability
- linearity, hermeticity, compactness, speed and stability

The ECAL at the LHC

- Homogeneous PbWO4 crystals:
 - Compact & high granularity (excellent energy containment)
 - Crystals light-yield spread (~10%)
 - Transparency variation with radiation
- **EB** (Barrel): |η|<1.48

- **EE** (Endcap): 1.48<|η|<3.
 - $(2.9 \times 2.9 \times 22 \text{ cm}^3) \sim 25 \times 10^{-3}$
 - **VPT** photodetectors (gain 10)
 - ▶ Gain spread between VPTs ~25%

- **ES** (Preshower): 1.65<|η|<2.6
 - ▶ 3X₀ Pb/Si strips
 - ▶ (1.90x61 mm²) x-y plane

no longit. segmentation (ES apart)

- Required Intercalibration + Stabilisation and monitoring
- Energy resolution at test beams in EB
 - ▶ no B, no upstream material, fixed impact point
 - ▶ Achieved 0.3% constant term for EB by careful design/construction

$$\frac{\sigma_{\rm E}}{\rm E} = \frac{2.8\%}{\sqrt{\rm E~(GeV)}} \oplus \frac{0.128}{\rm E~(GeV)} \oplus 0.3\%$$

Energy estimation

- \blacktriangleright To obtain the most accurate estimate of e/ γ energy in a supercluster of crystals
- Dynamic superclustering of the deposits in ECAL to recover energy radiated due to bremsstrahlung/conversion
- $E_{e/\gamma} = GF_{e/\gamma} \Sigma_i (S_i(t)c_i A_i)$

Ai: single channel amplitude

Equalisation of channel response

 C_i : single channels inter-calibration coefficients

 $S_i(t)$: time-dependent correction for response variations

Global scale calibration and cluster energy-correction

G: Global scale calibration

F_{e/Y}: Particle energy corrections

(geometry, clustering, upstream material, ...)

Time dependent response changes

- > ECAL radiation-induced effects, heavily η dependent
 - Crystal transparency changes
 - VPT photocathode ageing with accumulated charge
 - ▶ APD I_{leak} increases
- ▶ Channel response is constantly monitored with $\lambda = 447$ nm (peak emission) laser light

- ▶ Averaged measurements every 40 minutes for all 75848 crystals
- Corrections prepared and checked in less than 48 hours (using π^0/η) for prompt reconstruction

Loss of:

≤ 6% in EB

 \leq 30% in EE up to $|\eta|<2.5$

~70% in EE for $|\eta| > 2.5$

Response stability and trigger

Stability checked using electrons from W decays

- Weekly corrections for optimising the L1 e/γ trigger
 - currently for EE, foreseen for EB in Run2
- ▶ Efficient and stable e/y trigger
 - ▶ Level-1 (40 MHz) trigger primitives (E_T sum of energies in 5x5 crystals)
- ▶ E.g. EG20 (E_T>20 GeV)
 - Lowest un-prescaled e/γ trigger in 2012
 - Fully efficient for Hyy with mH>100 GeV Leading Y E_T>40 GeV

Inter-calibration

Cross-comparison and combination of methods

- Calibration
 - ϕ -symmetry, π^0/η : limited by systematic uncertainties
 - ▶ E/p: limited by statistical uncertainty (dominant for $|\eta|>1$)

COMBINED:

Barrel: <1% (~0.4% for $|\eta|$ <1)

Endcaps: ~2% (almost everywhere)

Precise calibration of the detector plays a key role in the energy resolution.

Energy and mass resolution

▶ Derive electron energy resolution from Z->ee peak width (Breit-Wigner ⊗ Crystal-Ball)

- Improvement from prompt to refined conditions
 - ▶ Evident in EE where irradiation effects are important
- Some data-mc discrepancy:
 - Upstream material effect
 - Evolution in 2012 conditions
- Detailed MC simulation
- MC tuning through extra smearing

Result in improved cluster energy corrections

H->YY analysis

▶ Narrow resonance of two high E_T photons over a falling background: prompt (70%) + fake di-photon (30%) events

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Key requirements:

- Excellent γ energy resolution
 - see previous slides

▶ Highly efficient Y ID

- Shower spread vs η
- ▶ R9 ≈ $E_{3x3}/E_{cluster}$
- ▶ Isolation, H/E...

YY vertex-finding

- ▶ No longitudinal segmentation of ECAL
- Photon direction from shower position and interaction vertex identification
- Vertex assignment based on tracks and di-photon system kinematics
- If incorrect assignment,
 dominant contribution to γγ mass resolution

category 4 (EE, R₂<0.94)

photon SC η

Evolution of ECAL understanding...

 \blacktriangleright Expected H-> $\gamma\gamma$ signal modelled with energy resolution measured from data (Z->ee)

PROMPT reconstruction within 48h from data taking

RECONSTRUCTION with improved conditions

H->YY result

MORIOND 2013

Excess of events above background at a mass close to 125 GeV All measurements are compatible with a Higgs boson with a mass of 125.4 GeV

- Clean signal
- ▶ High precision mass measurement

VERY GOOD CONTROL OF DETECTOR EFFECTS

Perspectives for the future...

- ▶ ECAL is designed to operate up to 500/fb at 10³⁴ cm⁻²s⁻¹
 - Phase 1: will be operated at 2X design lumi

- Increasing challenges: for next runs and HL-LHC
 - harsh environment => evolution of conditions and ageing
 - high stat => trigger rate
 - ▶ PU mitigation

towards the next runs...

- ▶ ECAL will continue to have excellent performance
- Provided some revised strategies and tunings:
- Calorimeter trigger update in view of 13 TeV and increased instantaneous lumi

poster by A. Zabi

▶ ECAL timing performance:

talk by A. Bornheim

- expected to be crucial for PU-mitigation and particle ID at HL-LHC
- could be important to improve performance with current/run 2 conditions

- ▶ Further improvements from:
 - fine tune of calibration and time-dependent corrections
 - local containment and upstream material corrections
 - possible enhanced reconstruction algorithms

- ▶ Detector upgrades will be needed during LS3 to deal with the HL-LHC conditions
- Requirements from the ageing of the detector
- ▶ EB performance will be excellent up to 3000/fb poster by M. Planer (with modifications)

EE will be ok until 500/fb talk by B. Bilki and then gradually lose acceptance they need to be replaced for the HL-LHC

Lessons learned and projections

- ▶ ECAL performed excellently throughout LHC Run 1
- ▶ Good understanding and control of detector => H->YY discovery with high sensitivity
- ECAL barrel drives the sensitivity to the H->γγ search with close-to-excellent resolution and photon ID capabilities
 - Limitation due to material budget at $|\eta|>1$
- => tunings and corrections ongoing
- ECAL endcaps currently less optimal to the H->γγ sensitivity object of optimisation for next operation to further exploit LHC potential
 - ▶ Increased material budget in front of the calorimeter => tunings and corrections ongoing
 - ▶ Less precise single channel calibrations

=> tunings and corrections ongoing

- ▶ ECAL collected 1% of total expected luminosity
 - ▶ ECAL performance OK up to 500/fb (end of Phase 1)
 - ▶ BARREL performance OK up to 3000/fb and upgrade required for ENDCAPS (Phase 2)
- ... and now wait for LHC Run2 lesson

BACKUP

Noise evolution in run 1

▶ Electronic noise in ADC counts:

increase of the APDs dark current in EB

Energy equivalent noise (in MeV): noise in ADC is scaled by the laser corrections and IC

constant in EE (VPTs)

Energy corrections along η

