

International Conference on Technology and Instrumentation in Particle Physics 2 – 6 June 2014 / Amsterdam, The Netherlands

The Digital Photon Counter (DPC, dSiPM) a <u>scalable</u>, disruptive technology for application in medical imaging, high energy physics and beyond

York Haemisch, Ph.D., M. Sc. Eng., Senior Director

Philips Digital Photon Counting, Aachen, Germany Amsterdam, June, 3rd, 2014

© Philips Digital Photon Counting, 2014

Outline

• DPC (dSiPM): a

- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sensor
- First user experiences, first PET imaging results
- Future Developments

 > 120 years of light detection: From Photomultiplier Tubes (PMTs) to Photodiodes (PDs), Avalanche Photodiodes (APDs)
 to Arrays of Geiger-Mode APDs (Silicon Photomultipliers (SiPMs))

Digitization, Miniaturization, Integration...

Characteristic innovation patterns

Continuous Improvement ("Kaizen" = good change)

- Long-term approach to work that systematically seeks to achieve small, incremental changes
- Low risk
- Often geared towards reducing costs.
- improving position in **existing markets**

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text>

Disruptive Innovation

- Introduction of new technologies, products or services in an effort to promote change and gain advantage over the competition.
- **Risky** because it requires employees to embrace a radically different approach to product development or marketing.
- Calls for **investments** rather than cost savings.
- Creates **new market opportunities** where none existed before.

Bower, Joseph L. & Christensen, Clayton M. (1995) "Disruptive Technologies: Catching the Wave" *Harvard Business Review*, January-February 1995

Christensen, Clayton M. (1997) "The Innovator's Dilemma" Harvard Business School Press, ISBN 0-87584-585-1

June 2014 ©Philips Digital Photon Counting

Persistent Forecasting of Disruptive Technologies. THE NATIONAL ACADEMIES PRESS, Washington 2009

Disruptive technology adoption (Moore)

- Disruptive innovation early adopters are universities, luminary research sites
- Market growth can only be expected AFTER crossing the Chasm

Moore, Geoffrey A.: "Crossing the Chasm: Marketing and Selling high-tech products to mainstream customers" Harper Business Essentials (1991) ISBN 0-06-051712-3

Disruptive Technology: How to cross the chasm

- Understand your **PRODUCT CONCEPT**
- Make the disruptive technology **EXPERIENCABLE**
- Demonstrate **SCALABILITY**
- Demonstrate **IMPACT** on applications
- Select your **TARGET MARKET(S)**

Peter F. Drucker: "Innovation and Entrepreneurship" Harper Business; Reprint (2006) ISBN-10: 0060851139

Geoffrey A. Moore: "Crossing the Chasm", Harper Business; 2nd Edition (2006) **ISBN-10:** 0060517123

Everett M. Rogers: "Diffusion of Innovation", Free Press; 5th Edition (2003) **ISBN-10:** 0743222091

• DPC (dSiPM): a

- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sense.
- First user experiences, first PET imaging results
- Future Developments

10

Motivation PET: towards the 100 ps PET device

Positron-Emission-Tomography (PET) with Time-of-Flight (TOF)

ToF impact: clinically useful sensitivity gain

ToF-PET rel. sensitivity gain as f(CRT)

Data calculated after: J.S. Karp et.al. JNM, **49/3**, 462-470, 2008

PET: ToF improves signal-to-noise (SNR)

Time-of-Flight (TOF)

From PMT to solid state: more motivation (Nucl. Imag.)

performance

- 1:1 coupling (CR, NEC, linearity)
- Time-of-Flight (SiPM)
- Depth of Interaction (DOI)-3D

application

- MR compatibility
- compactness/low voltage

industrialization

- scalability/stability?
- compactness/low voltage
- (lower) cost?, serviceability etc.

Desired: 1:1 coupling of crystal & photo detector

- Homogenous spatial resolution and contrast across FOV (incl. DOI)
- Much enhanced Noise Equivalent Countrate (NEC)
- Less/no dependence of PETperformance on injected dose
- Improved linear response over a wide dose range
- Improved spatial resolution and contrast recovery

- DPC (dSiPM): a
- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sensor
- First user experiences, first PET imaging results
- Future Developments

16

A G-APD or SPAD intrinsically is a digital device

"Therefore, while the APD is a linear amplifier for the input optical signal with limited gain, the SPAD is a trigger device so the gain concept is meaningless." (source: <u>http://en.wikipedia.org/w/index.php?title=Single-photon-avalanche-</u> <u>diode&oldid=603577212</u>)

DPC uses intrinsic binary nature of SPADs

- DPC: combination of diode- & CMOS technology (lateral integration)
- Voltage drop at breakdown is used to generate trigger signal

With DPC photons are counted directly

DPC is an integrated, scalable solution

DPC: "intelligent" sensor with 4-layer interface

FPGA

- Clock distribution
- Data collection/ concentration
- TDC linearization
- Saturation correction
- Skew correction

Flash

- FPGA firmware
- TDC calibration data
- Configuration
- Inhibit memory maps

PHILIPS

On-chip integration of TDC provides superior timing across arrays

Ultimate timing with short LSO co-doped crystal

3 mm x 3 mm x 5 mm Ca co-doped LSO:Ce on PDPC demonstrator chip

Photograph of Ca co-doped LSO:Ce crystal mounted on dSiPM demonstrator chip

- Time difference spectrum measured with a Na-22 point source
- CRT = 120 ps FWHM (for two detectors in coincidence) at room temperature

D.R. Schaart et al, NSS-MIC 2011, MIC15.S-137

11

TUDelft

DPC: dark count management by digitization

- Silicon based light sensors have background noise (dark counts), varying with temperature.
- In digital SiPMs every cell can be addressed individually.
- · Cells with high dark counts can be switched off.
- A few cells switched off (1-5%) reduces dark count levels by orders of magnitude.

Sub-summary: Advantages of DPC vs. analog SiPM

- Significantly reduced
 temperature sensitivity (~10⁻¹)
- Active quenching reduces afterpulsing & crosstalk (~10⁻¹)
- Individually addressable cells enable DC control (~10⁻²)
- Better linearity (&correction)
- Better intrinsic timing resolution due to integrated TDCs (~ factor 5)
- No analog electronics, no ADCs, no ASICs

Outline

• DPC (dSiPM): a

- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sensor
- First user experiences, first PET imaging results
- Future Developments

26

Challenge: significant increase in information density

- bandwidth requirements
- data reduction
- front end correction/data processing
- calibration

PMT-PET: 420 channels (current Philips PET)

Solid state PET: evtl. > 35.000 channels

Lines-of-response (LOR)

DPC: from sensor to detector module

- 4 DPC sensor arrays (tiles)
- ~ 6.6 x 6.6 cm²
- usable with or w/o scintillator crystals
- variable scintillator geometries
- Module board with FPGA, pre-processing capability & well defined interface
- local power supply
- \bullet experimentally cooled to 40°C

Rapid PoC: PET prototype, tested @ FZ Juelich

- Inner Diameter (face-to-face): 20 cm
- 10 modules a 4 sensors
- LYSO 4 x 4 x 22 mm²
- Coolable down to 0°C
- Sensor temp. : ~ 5-10°C

Rapid PoC: PET prototype – timing (CRT)

Rapid PoC: PET prototype – image quality (ToF)

- Hot rod phantom (70 mm diameter)
- 1h data acquisition (10-15 MBq ¹⁸F)
- Trigger 2 at 7-9°C (internal tile temperature)
- Energy (RE 13% & clustering) and time (TR 390 ps) calibrations applied
- Energy window of [440;660] keV and time window of 3 ns [-1.5;1.5]

PURE/OSEM (0.5 mm voxels), no norm., no decay time, all other corrections applied.

Rapid PoC: FARICH prototype detector

First test of DPC in High Energy Physics: FARICH Detector @ CERN, June 2012

Main objective:

Proof of concept: full Cherenkov ring detection with DPC array

Timeline:

- Started to envisage: 28/02/12
- Requirements for the FARICH prototype test setup fixed: 30/04/12
- Prototype operational @ Aachen Labs: 03/06/12
- Installed @ CERN: 12/06/12
- Subsequent beam runs for 12 days until 25/06/12 with smooth setup operation

Fast prototyping!

Slide courtesy of S. Kononov, Budker Institute, Novosibirsk

FARICH prototype detector @ CERN

- Intrinsic timing resolution of full (20 x 20 cm²) detector: $\sigma = 48 \text{ ps}$
- Discrimination of protons, kaons and pions with high angular resolution
- Curable damage of sensor at primary beam spot

Data courtesy of S. Kononov, Budker Institute, Novosibirsk

DPC: <u>Scalable</u> Technology Maintains Intrinsic Performance

June 2014 ©Philips Digital Photon Counting

DPC: technology to application ("DPC Lego")

• DPC (dSiPM): a

- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sensor
- First user experiences, first PET imaging results
- Future Developments

37

DPC Sensor Technology Evaluation Kit (STEK)

Rapid PoP of DOI scheme @SNU

2013/01

PDPC-TEK evaluation kit arrived

2013/02-03

Initial evaluation of PDPC-TEK evaluation kit

2013/04-07

- Preliminary experiment for DOI measurement
 - Changing temperature, tile configuration, several experimental conditions, light guide size, etc.

2013/08

- Several debugging processes to acquire better results
 - Change of coincidence window & irradiation direction, etc.

2013/09-now

- Rotation of two detectors
- Also working to improve the timing resolution

Functional & Molecular Imaging System Lab @ SNU

Fast testing of various scintillators @ TUD

- No fixed scintillation crystals attached freedom of choice
- Water and Peltier cooling
- Copper heat sink
- Nitrogen flushing
- Stable at 0 C
- Larger cooling plate for 8 sensors

Courtesy of J. Petzold, OncoRay-Technical University Dresden

Fast testing of various scintillators @ TUD

- Coupled different materials in several shapes to DPC
- Monolithic 32x32 mm²
- Additional shapes
- Compared light yield, energy- and timing resolution with standard PMT

LYSO	BGO	CaF ₂	GAGG	CsI(Tl)
۲	•		•	
	\bigcirc			
BaF ₂	CeBr ₃	GSO	SrI2(Eu)	NaI(Tl)

Courtesy of J. Petzold, OncoRay-Technical University Dresden

Fast and easy test of GAGG scintillator @ TUM

Philips DPC Coincidence Timing

MÜNCHEN Coincidence Resolving Time - Photopeak These Collectors (see 2x2x8mm³ | Y8O/0400 400 CRT PTFE Wrapped 1 Pixel = 3.8775 x 3.2 mm² 252 GAGG Na²² 300 200d = 88 mm 200 150 100 Parameters 60 • 420 < Energy [keV] < 600</p> 100 -842 Time Difference (TDC Sing) 10% DC inhibited cells 東京ナ 2°C THE UNIVERSITY OF TOKYO Trigger Scheme Avg. No. photons to trigger 1 2.333 8.333 З.

 LYSO CRT FWHM [ps]
 215
 280
 350
 580

 GAGG CRT FWHM [ps]
 430
 600
 685
 995

Courtesy of K.Shimazoe, Tokio University

TECHNISCHE

UNIVERSITÄT

DPC opens new opportunities

Another Usage of DCMs: "Coupling Visualization"

- Array of Single GAGG Crystals matching exactly DPC pixel geometry
 - Coupling Evolution from t = 0h to t =24h

DPC with monolithic crystals@ TU Delft

Performance summary

Delft University of Technology

Current results with LSO monolithic scintillators on dSiPM arrays:

Performance para	ameter	Monolithic	State of the art
Energy resolution	(% FWHM)	11 - 12	~12
Spatial resolution	(mm FWHM)	1.0 - 1.6	4 - 6
DOI resolution	(mm FWHM)	3 - 5 mm	None
CRT	(ps FWHM)	160 - 185	500 - 650

⇒ A highly promising detector for future clinical PET/CT and PET/MRI systems

H.T. van Dam et al, Sub-200 ps CRT in monolithic scintillator PET detectors using digital
 SIPM arrays and maximum likelihood interaction time estimation, PMB 58, 3243-3257, 2013

Rapid Prototyping: DigiPET @ Gent University

15M coincidences

160M coincidences

S. Espana et al, "DigiPET: Sub-millimeter spatial resolution small animal PET imaging using thin monolithic scintillators", in preparation

Evaluation of DPC for SPECT @ UGent

Courtesy of S. Vandenberghe, Gent University

Courtesy of J.H. Park, Hanyang University, Seoul

New PET Scanner: phenoPET

- 1 Ring: 12 Modules (48 Tiles)
- Scanner: 3 Rings (36 Modules)
- FOV: ~18cm x 18cm

Graph courtesy of H. Noeldgen, FZ Juelich

NEW

DPC Module Technology Evaluation Kit (MTEK)

Operation of 2 DPC Modules

- 2x2 tiles per module
- local voltage regulation
- designed for easy cooling

Local voltage supply allows to use longer cabling (1-3 m)

Same sensor control features as in STEK

First kits installed!

Clinical PET with DPC: towards the first product

PMT DPC PMT DPC

Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA

Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA

June 2014

Disruptive Technology: How to cross the chasm

- Understand your PRODUCT CONCEPT
- Make the disruptive technology **EXPERIENCABLE**
- Demonstrate **SCALABILITY**
- Demonstrate **IMPACT** on applications
- select your TARGET MARKET(S)

Peter F. Drucker: "Innovation and Entrepreneurship" Harper Business; Reprint (2006) **ISBN-10:** 0060851139

Geoffrey A. Moore: "Crossing the Chasm", Harper Business; 2nd Edition (2006) **ISBN-10:** 0060517123

Everett M. Rogers: "Diffusion of Innovation", Free Press; 5th Edition (2003) **ISBN-10:** 0743222091

- Motivation: Positron Emission Tomography
- Advantages of the digital concept
- DPC technology beyond the sensor
- First user experiences, first PET imaging results
- Future Developments

56

The future: What direction to go?

DPC: current parameters are optimized for TOF-PET

DPC: Directions/Areas of Development

• Radiation hardness

June 2014 ©Philips Digital Photon Counting

geometries

PHILIPS

Summary

- DPC is a disruptive technology that will induce changes in applications.
- DPC development was triggered by ToF-PET and shows significant improvements for this application.
- DPC has shown superior performance and ease of use vs. analog SiPM technology (24 contributions at IEEE2013).
- DPC demonstrated scalability of technology in maintaining intrinsic performance in larger systems:
 - PDPC PET test ring
 - FARICH detector prototype
 - many user PoC's
- As a CMOS based technology DPC needs volume to succeed, therefore a systems architecture concept was developed.
- New application areas for DPC are explored by adapted designs.

Thank you very much for your attention!

Thanks also to:

PDPC:

Thomas Frach Mezbah Shaber Carsten Degenhardt Louis Meesen Ben Zwaans Oliver Muelhens Ralf Schulze Sebastian Reinartz Ralf Dorscheid Rik de Gruyter Shu Xu Anja Schmitz

Philips Research/RWTH:

Andreia Trinidade Pedro Rodrigues Andreas Thon Volkmar Schulz Torsten Solf Andre Salomon Björn Weissler Pierre Gebhardt Jakob Wehner David Schug

FZ Juelich:

Siegfried Jahnke Gerhard Roeb Simone Beer Matthias Streun Günther Kemmerling Holger Nöldgen Marco Dautzenberg

Boreskov Institute, Novosibirsk A.F. Danilyuk

Budker Institute of Nuclear Physics, Novosibirsk A.Yu.Barnyakov M.Yu.Barnyakov V.S.Bobrovnikov A.R.Buzykaev V.V.Gulevich S.A.Kononov E.A.Kravchenko I.A.Kuyanov A.P.Onuchin I.V.Ovtin A.A.Talyshev

Thank you!

www.philips.com/digitalphotoncounting

york.haemisch@philips.com