

International Conference on Technology nd Instrumentation in Particle Physics

The Digital Photon Counter (DPC, dSiPM) a scalable, disruptive technology for application in medical imaging, high energy physics and beyond

York Haemisch, Ph.D., M. Sc. Eng., Senior Director

Philips Digital Photon Counting, Aachen, Germany Amsterdam, June, 3rd, 2014

© Philips Digital Photon Counting, 2014

Outline

- •**Motivation: Positron Emission Tomography**
- **Advantages of the digital concept**
- •**DPC technology beyond the sensor**
- •**First user experiences, first PET imaging results**
- •**Future Developments**

> 120 years of light detection: From Photomultiplier Tubes (PMTs) to Photodiodes (PDs), Avalanche Photodiodes (APDs) to Arrays of Geiger-Mode APDs (Silicon Photomultipliers (SiPMs))

Digitization, Miniaturization, Integration…

PHILIPS

Characteristic innovation patterns

Continuous Improvement ("Kaizen" = good change)

- Long-term approach to work that systematically seeks to achieve **small,**
- Low risk
- Often geared towards **reducing costs.**
- improving position in **existing markets**

THE CLASSIC BESTSELLER Innovator's Disruptive Technologie Catching the Wave Dilemma ook That Will Chang **CLAYTON M. CHRISTEN**

Disruptive Innovation

- Introduction of new technolo gies, **incremental changes**

Low risk **by the contract of the services** in an effort to

groducts or services in an effort to **promote change and gain advantage** over the competition.
	- **Risky** because it requires employees to embrace a radically different approach to product development or marketing.
	- Calls for **investments** rather than cost savings.
	- Creates **new market opportunities** where none existed before.

Bower, Joseph L. & Christensen, Clayton M. (1995) "Disruptive Technologies: Catching the Wave" *Harvard Business Review*, January-February 1995

Christensen, Clayton M. (1997) "The Innovator's Dilemma" *Harvard Business School Press*, ISBN 0-87584-585-1

- Mostly **same applications**
- Users adopt over ^a **period of time**

- Opens road to **new applications**
- Often **explosive growth** of markets

I think there is a world market for about five computers.

(Thomas J. Watson, Jr.)

 June 2014 ©Philips Digital Photon Counting *Persistent Forecasting of Disruptive Technologies.* THE NATIONAL ACADEMIES PRESS, Washington 2009

PHILIPS

June 2014 ©Philips Digital Photon Counting

Disruptive technology adoption (Moore)

- • Disruptive innovation – early adopters are universities, luminary research sites
- \bullet Market growth can only be expected AFTER crossing the Chasm

Moore, Geoffrey A.: "Crossing the Chasm: Marketing and Selling high-tech products to mainstream customers" Harper Business Essentials (1991) ISBN 0-06-051712-3

Disruptive Technology: How to cross the chasm

- Understand your **PRODUCT CONCEPT**
- Make the disruptive technology **EXPERIENCABLE**
- Demonstrate **SCALABILITY**
- Demonstrate **IMPACT** on applications
- Select your **TARGET MARKET(S)**

Peter F. Drucker: "Innovation and Entrepreneurship" Harper Business; Reprint (2006) **ISBN-10:** 0060851139

Geoffrey A. Moore: "Crossing the Chasm", Harper Business; 2nd Edition (2006) **ISBN-10:** 0060517123

Everett M. Rogers: "Diffusion of Innovation", Free Press; 5th Edition (2003) **ISBN-10:** 0743222091

EVERETT M.ROGERS

• **DPC (dSiPM): a PRBBYPHYE**

- •**Motivation: Positron Emission Tomography**
- **Advantages of the digital concept**
-
-
-

Motivation PET: towards the 100 ps PET device

Positron-Emission-Tomography (PET) with Time-of-Flight (TOF)

ToF imp y act: clinically useful sensitivity gain

ToF-PET rel. sensitivity gain as f(CRT)

Data calculated after: J.S. Karp et.al. JNM, **49/3**, 462-470, 2008

June 2014 ©Philips Digital Photon Counting

PET: ToF improves signal-to-noise (SNR)

Time-of-Flight (TOF)

PHILIPS

From PMT to solid state: more motivation (Nucl. Imag.)

performance

- **1:1 cou plin g (CR , NEC , linearity) p (, , y)**
- **Time-of-Flight (SiPM)**
- **De p () th of Interaction (DOI)-3D**

application

- **MR ibili MR compatibility**
- **compactness/low voltage**

industrialization

- **scalability/stability?**
- **compactness/low voltage**
- **(l) t? i bilit ^t (lower) cost?, serviceability e tc.**

Desired: 1:1 coupling of crystal & photo detector

- • Homogenous **spatial resolution** and contrast across FOV (incl. DOI)
- • Much **enhanced Noise Equivalent Countrate** (NEC)
- • Less/no **dependence** of PETperformance **on** injected **dose**
- •**Improved linear response** over a wide dose range
- Improved spatial resolution $\|\cdot\|_{\frac{3}{8}}^{\frac{3}{8} \times 1000}$ and **contrast recovery**

-
- **Motivation: Positron Emission Tomography**
- •**Advantages of the digital concept**
-
-
-

A G-APD or SPAD intrinsically is a digital device

"Therefore, while the APD is a linear amplifier for the input optical signal with ld h d imite d gain, t he SPAD is a trigger device so th l e gain concept is meaningless." (source: http://en.wikipedia.org/w/index.php?title=Single-photon-avalanchediode&oldid=603577212)

DPC uses intrinsic binar y nature of SPADs

- DPC: combination of diode- & CMOS technology (lateral integration)
- Voltage drop at breakdown is used to generate trigger signal

With DPC photons are counted directly

DPC is an integrated, scalable solution

DPC: "intelligent" sensor with 4-layer interface

FPGA

- Clock distribution
- Data collection/ concentration
- TDC linearization
- Saturation correction
- Skew correction

Fl hFlas

- FPGA firmware
- TDC calibration data
- Configuration
- Inhibit memory maps

DHILIDS

On-chip integration of TDC provides superior timing across arrays

Ultimate timing with short LSO co-doped crystal

3 mm x 3 mm x 5 mm Ca co-doped LSO:Ce on PDPC demonstrator chip

Photograph of Ca co-doped LSO:Ce crystal mounted on dSiPM demonstrator chip

- Time difference spectrum measured with a Na-22 point source
- CRT = 120 ps FWHM (for two detectors in coincidence) at room temperature

D.R. Schaart et al, NSS-MIC 2011, MIC15.S-137

11

TUDelft

DPC: dark count management by digitization

- · Silicon based light sensors have background noise (dark counts), varying with temperature.
- . In digital SiPMs every cell can be addressed individually.
- . Cells with high dark counts can be switched off.
- A few cells switched off (1-5%) reduces dark count levels by orders of magnitude.

Sub-summary: Advantages of DPC vs. analog SiPM y g g

- Significantly **reduced temperature sensitivity** (~10-1)
- Active quenching **reduces afterpulsing & crosstalk** (~10-1)
- Individually addressable cells enable **DC control** (~10⁻²)
- Better **linearity** (&correction)
- Better **intrinsic timing resolution** due to integrated TDCs (\sim factor 5)
- **No analog electronics**, no ADCs, no ASICs

Outline

• **DPC (dSiPM): a PRENTINE**

- **Motivation: Positron Emission Tomography**
- **Advantages of the digital concept**
- •**DPC technology beyond the sensor**
-
-

Challenge: significant increase in information density g g y

- •**bandwidth requirements**
- \bullet **data reduction**
- • **front end correction/data processing**
- •**calibration**

PMT-PET:420 channels(current Philips PET)

Solid state PET: evtl. > 35.000 channels

limes-of-response (LOR)

Lines-of-response (LOR)

DPC: from sensor to detector module

- 4 DPC sensor arrays (tiles)
- \sim 6.6 x 6.6 cm²
- usable with or w/o scintillator crystals
- variable scintillator geometries
- Module board with FPGA, pre-processing capability & well defined interface
- local power supply
- experimentally cooled to 40 **°** $^{\circ}{\mathsf C}$

Rapid PoC: PET prototype, tested @ FZ Juelich

- **Inner Diameter (face-to-face): 20 cm**
- **10 d l 4 10 mo ules a 4 sensors**
- **LYSO 4 x 4 x 22 mm^²**
- **Coolable down to 0 °** $^{\circ}$ C
- **Sensor temp. : ~ 5-10 °** $^{\circ}$ C

Rapid PoC: PET prototype – timing (CRT)

Rapid PoC: PET prototype – image quality (ToF)

- Hot rod phantom (70 mm diameter)
- $\bullet~$ 1h data acquisition (10-15 MBq 18 F)
- Trigger 2 at 7-9 °C (internal tile temperature)
- Energy (RE 13% & clustering) and time (TR 390 ps) calibrations applied
- Energy window of [440;660] keV and time window of 3 ns [-1.5;1.5]

PURE/OSEM (0.5 mm voxels), no norm., no decay time, all other corrections applied.

Rapid PoC: FARICH prototype detector

First test of DPC in High Energy Physics: FARICH Detector @ CERN, June 2012

Main objective:

Proof of concept: full Cherenkov ring detection with DPC array

Timeline:

- Started to envisage: 28/02/12
- Requirements for the FARICH prototype test setup fixed: 30/04/12
- Prototype operational $@$ Aachen Labs: 03/06/12
- Installed @ CERN: 12/06/12
- Subsequent beam runs for 12 days until 25/06/12 with smooth setup operation

Fast prototyping!

 $13/02$

Slide courtesy of S. Kononov, Budker Institute, Novosibirsk

FARICH prototype detector @ CERN

- •Intrinsic timing resolution of full (20 x 20 cm²) detector: **σ = 48 ps**
- •Discrimination of protons, kaons and pions with high angular resolution
- •Curable damage of sensor at primary beam spot

Data courtesy of S. Kononov, Budker Institute, Novosibirs k

DPC: Scalable Technology Maintains Intrinsic Performance

DPC: technology to application ("DPC Lego")

PHILIPS

36

- **Motivation: Positron Emission Tomography**
- **Advantages of the digital concept**
-
- •**First user experiences, first PET imaging results**
-

DPC Sensor Technology Evaluation Kit (STEK)

Rapid PoP of DOI scheme @SNU

2013/01

– PDPC-TEK evaluation kit arrived

2013 /02-03 /

– Initial evaluation of PDPC-TEK evaluation kit

2013/04-07

- Preliminary experiment for DOI measurement
	- Changing temperature, tile configuration, several experimental conditions, light guide size, etc.

2013/08

- Several debugging processes to acquire better results
	- Change of coincidence window & irradiation direction, etc.

2013/09-now

- Rotation of two detectors
- Also working to improve the timin

Functional & Molecular Functional & Molecular Imaging System Lab @ SNU

Fast testing of various scintillators @ TUD

- \blacksquare No fixed scintillation crystals attached – freedom of choice
- \blacksquare Water and Peltier cooling
- \blacksquare Copper heat sink
- \blacksquare Nitrogen flushing
- \blacksquare Stable at 0 C
- П Larger cooling plate for 8 sensors

Courtesy of J. Petzold, OncoRay-Technical University Dresden

Fast testing of various scintillators @ TUD

- **Coupled different materials** in several shapes to DPC
- Monolithic 32x32 mm²
- \blacksquare Additional shapes
- \blacksquare Compared light yield, energy- and timing resolution with standard PMT

Courtesy of J. Petzold, OncoRay-Technical University Dresden

Fast and easy test of GAGG scintillator @ TUM

Philips DPC Coincidence Timing

GAGG CRT FWHM [ps]

MÜNCHEN Coincidence Resolving Time - Photopeak Time Officerance Inc. 2x2x8mm³ | V8CVG&GG ann **CRT** 1 Pbol = 3.8776×3.2 mm² **PTFE Wrapped** 398 GAGG Na²² 500 250 200 $d = 88$ mm 150 108 · Parameters 649 \cdot 420 < Energy [keV] < 600 44 **SIP OF** Time Difference [TDC Bina] ■ 10% DC inhibited cells 東京大学 -2° C THE UNIVERSITY OF TOKYO **Trigger Scheme** -3 Avg. No. photons to trigger $\mathbf{1}$ $2 - 333$ 8.333 31 LYSO CRT FWHM [ps] 215 280 350 580

Courtesy of K.Shimazoe, Tokio University

430

TECHNISCHE

UNIVERSITÄT

600

685

995

DPC opens new opportunities

Another Usage of DCMs: "Coupling Visualization"

- . Array of Single GAGG Crystals matching exactly DPC pixel geometry
	- Coupling Evolution from t = 0h to t = 24h

DPC with monolithic crystals@ TU Delft

Performance summary

Delft University of Technology

Current results with LSO monolithic scintillators on dSiPM arrays:

 \Rightarrow A highly promising detector for future clinical PET/CT and PET/MRI systems

H.T. van Dam et al, Sub-200 ps CRT in monolithic scintillator PET detectors using digital **TUDelft** SIPM arrays and maximum likelihood interaction time estimation, PMB 58, 3243-3257, 2013 107

Rapid Prototyping: DigiPET @ Gent University

15M coincidences

160M coincidences

S. Espana *et al*, "DigiPET: Sub-millimeter spatial resolution small animal PET imaging using thin monolithic scintillators", *in preparation*

Evaluation of DPC for SPECT @ UGent

Courtesy of S. Vandenberghe, Gent University

Courtesy of J.H. Park, Hanyang University, Seoul

New PET Scanner: phenoPET

- 1 Ring: 12 Modules (48 Tiles) \bullet
- Scanner: 3 Rings (36 Modules) \bullet
- FOV: ~18cm x 18cm \bullet

Graph courtesy of H. Noeldgen, FZ Juelich

DPC Module Technology () Evaluation Kit (MTEK)

O ti f 2 DPC M d l Operation of Modules

- •2x2 tiles per module
- •local voltage regulation
- •designed for easy cooling

Local voltage supply allows to use longer cabling (1-3 m)

Sa e se so co t o eatu es me sensor control features as in STEK

NEW

Clinical PET with DPC: towards the first product

PMT DPC PMT DPCDPC

Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA

Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA $\qquad\qquad\qquad\qquad\qquad\qquad\qquad$

PHILIPS

Disruptive Technology: How to cross the chasm

- Understand your **PRODUCT CONCEPT**
- Make the disruptive technology **EXPERIENCABLE**
- Demonstrate **SCALABILITY**
- •**• Demonstrate IMPACT** on applications
- select your **TARGET MARKET(S)**

Peter F. Drucker: "Innovation and Entrepreneurship" Harper Business; Reprint (2006) **ISBN-10:** 0060851139

Geoffrey A. Moore: "Crossing the Chasm", Harper Business; 2nd Edition (2006) **ISBN-10:** 0060517123

Everett M. Rogers: "Diffusion of Innovation", Free Press; 5th Edition (2003) **ISBN-10:** 0743222091

EVERETT M.ROGERS

- **Motivation: Positron Emission Tomography**
- **Advantages of the digital concept**
-
-
- •**Future Developments**

The future: What direction to go?

DPC: current parameters are optimized for TOF-PET

DPC: Directions/Areas of Development

58

Summary

- **DPC is a disruptive technology that will induce changes in applications.**
- **DPC development was triggered by ToF-PET and shows significant shows improvements for this application.**
- DPC has shown superior performance and ease of use vs. analog SiPM **technology (24 contributions at IEEE2013).**
- **DPC demonstrated scalability of technology in maintaining intrinsic performance in larger systems:**
	- *- PDPC PET test ring*
	- *<i>- FARICH detector prototype*
	- *- many user PoC's*
- **As a CMOS based technology DPC needs volume to succeed, therefore a** systems architecture concept was developed.
- **New application areas for DPC are explored by adapted designs.**

Thank you very much for your attention!

Thanks also to:

PDPC:

Thomas FrachMezbah ShaberCarsten Degenhardt Louis MeesenBen Zwaans Oliver MuelhensRalf SchulzeSebastian ReinartzRalf DorscheidRik de Gruyter Shu XuAnja Schmitz

Philips Research/RWTH:

Andreia TrinidadeAndreas ThonVolkmar SchulzTorsten SolfAndre SalomonBjörn Weissler Pierre GebhardtJakob WehnerDavid Schug

FZ Juelich:

h Shaber Pedro Rodrigues Gerhard Roeb Novosibirsk Siegfried Jahnke Gerhard RoebSimone BeerMatthias StreunGünther Kemmerling Holger Nöldgen Marco Dautzenberg

> **Boreskov Institute, Novosibirsk** *A.F. Danilyuk*

Budker Institute of Nuclear Physics, A.Yu.Barnyakov M.Yu.Barnyakov V.S.BobrovnikovA.R.Buzykaev V.V.GulevichS.A.Kononov E.A.KravchenkoI.A.Kuyanov A.P.OnuchinI.V.Ovtin A.A.Talyshev

Thank you!

hili /di i l h i www.philips.com/digitalphotoncounting

June 2014 ©Philips Digital Photon Counting **york.haemisch@philips.com**