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> 120 years of light detection: From Photomultiplier Tubes (PMTs) to 
Photodiodes (PDs), Avalanche Photodiodes (APDs)Photodiodes (PDs), Avalanche Photodiodes (APDs) 
to Arrays of Geiger-Mode APDs (Silicon Photomultipliers (SiPMs))

Late 1960-1990‘s19341887 1905 1960‘s

Lenard         Hertz Einstein PD, APD

PMT

G APD SPADG-APD, SPAD
First SPAD arrays
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Digitization, Miniaturization, Integration…
Transistor Television Photography Telephony

X R i i Next?: Light Detection
+ SOFTWARE !

X-Ray imaging Next?: Light Detection

DPC is in sync with current technology trends
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Characteristic innovation patterns

Continuous Improvement
(“Kaizen” = good change)

Disruptive Innovation
• Introduction of new technologies, 

• Long-term approach to work that 
systematically seeks to achieve small, 
incremental changes g ,

products or services in an effort to 
promote change and gain advantage over 
the competition. 

• Low risk
• Often geared towards reducing costs.
• improving position in existing markets

• Risky because it requires employees to 
embrace a radically different approach to 
product development or marketing. 

• Calls for investments rather than cost 
savings.

• Creates new market opportunities where 

Bower, Joseph L. & Christensen, Clayton M. (1995) "Disruptive Technologies: Catching the Wave" Harvard Business Review, January-
F b 1995

none existed before. 
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February 1995 
Christensen, Clayton M. (1997) "The Innovator's Dilemma" Harvard Business School Press, ISBN 0-87584-585-1



Roles ofRoles of

Displacing Market Creating

• Displaces incumbent technology in • Creates a new market or capability• Displaces incumbent technology in 
phase transition

• Mostly same applications
• Users adopt over a period of time

Creates a new market or capability
where none had previously existed

• Opens road to new applications
• Often explosive growth of marketsUsers adopt over a period of time Often explosive growth of markets
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examplesexamples
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Disruptive technology adoption (Moore)

• Disruptive innovation – early adopters are universities, luminary 
hresearch sites

• Market growth can only be expected AFTER crossing the Chasm
Moore, Geoffrey A.: “Crossing the Chasm: Marketing and Selling high-tech products to mainstream customers” Harper 
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Business Essentials (1991) ISBN 0-06-051712-3  



Disruptive Technology: How to cross the chasm 

• Understand your PRODUCT CONCEPTUnderstand your PRODUCT CONCEPT

• Make the disruptive technology EXPERIENCABLE

• Demonstrate SCALABILITY

• Demonstrate IMPACT on applications• Demonstrate IMPACT on applications

• Select your TARGET MARKET(S)

Peter F. Drucker: „Innovation and Entrepreneurship“  Harper Business; Reprint (2006)
ISBN-10: 0060851139
Geoffrey A. Moore: “Crossing the Chasm”, Harper Business; 2nd Edition (2006)
ISBN-10: 0060517123
Everett M. Rogers: „Diffusion of Innovation“, Free Press; 5th Edition (2003)
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Motivation PET: towards the 100 ps PET device 

Positron-Emission-Tomography (PET) with Time-of-Flight (TOF)

CRT     >1ns           500 ps 250 ps 100 ps

~ 400 ps (limit)> 1 ns ~ 250 ps > ~100 ps (potential)~ 400 ps (limit)> 1 ns  250 ps ---> 100 ps (potential)

APD ( i l) PMT DPC
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APD (special) PMT DPC



ToF impact: clinically useful sensitivity gainp y y g

D t l l t d ft J S K t l JNM 49/3 462 470 2008
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Data calculated after: J.S. Karp et.al. JNM, 49/3, 462-470, 2008



PET: ToF improves signal-to-noise (SNR) 
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Data courtesy of D. Townsend, Singapore



From PMT to solid state: more motivation (Nucl. Imag.)

• 1:1 coupling (CR, NEC, linearity)
performance
p g ( , , y)

• Time-of-Flight (SiPM)
• Depth of Interaction (DOI)-3Dp ( )

MR ibili

application

• MR  compatibility
• compactness/low voltage

• scalability/stability?
industrialization

• scalability/stability?
• compactness/low voltage

(l ) t? i bilit t
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• (lower) cost?, serviceability etc.



Desired: 1:1 coupling of crystal & photo detectorp g y p

• Homogenous spatial resolution
and contrast across FOV (incl. DOI)

• Much enhanced Noise Equivalent
Countrate (NEC)

• Less/no dependence of PET-Less/no dependence of PET
performance on injected dose

• Improved linear response over a wide• Improved linear response over a wide 
dose range

4 mm = 100%
3 80%• Improved spatial resolution

and contrast recovery
3 mm = 80%
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A G-APD or SPAD intrinsically is a digital device

G APD PDAPD PDG-APD
SPAD

PDAPD PD

“Therefore, while the APD is a linear amplifier for the input optical signal with 
l d h d h l ”limited gain, the SPAD is a trigger device so the gain concept is meaningless.” 
(source: http://en.wikipedia.org/w/index.php?title=Single-photon-avalanche-
diode&oldid=603577212)

June  2014      ©Philips Digital Photon Counting 17



DPC uses intrinsic binary nature of SPADs y

Digital Photon Counter (DPC)

• DPC:  combination of diode- & CMOS technology (lateral integration)
• Voltage drop at breakdown is used to generate trigger signal
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• Voltage drop at breakdown is used to generate trigger signal



With DPC photons are counted directly

Output: no. of photons
time stamp(s)
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No analog post-processing necessary!



DPC is an integrated, scalable solution

Digital Photon CounterAnalog SiPM 

• fully integrated
• fully digital signals
• no ASIC needed

• discrete, limited integration
• analog signals to be digitized
• dedicated ASIC needed no ASIC needed

• fully scalable
• dedicated ASIC needed
• difficult to scale
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DPC: “intelligent” sensor with 4-layer interface

FPGAFPGA
• Clock distribution
• Data collection/

concentration
• TDC linearization
• Saturation correction
• Skew correction

Fl h200 MHz ref clock
FPGA

Power & Bias

Flash
• FPGA firmware
• TDC calibration data

200 MHz ref. clock

Detector array
8 x 8 dSiPMs

Serial configuration
interface

• Configuration
• Inhibit memory maps  

Flash 
Memory

Serial Data
output (x2)

Temp . 
sensor
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On-chip integration of TDC provides superior timing p g p p g
across arrays

Contribution of: TDC network TDC network + diodes
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Contribution of:       TDC network TDC network + diodes



Ultimate timing with short LSO co-doped crystalg p y
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DPC: dark count management by digitizationg y g
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Sub-summary: Advantages of DPC vs. analog SiPM

• Significantly reduced

y g g

temperature sensitivity (~10-1)

• Active quenching reduces
afterpulsing & crosstalk (~10-1)

• Individually addressable
2cells enable DC control (~10-2)

• Better linearity (&correction)

• Better intrinsic timing 
resolution due to integrated
TDC (~ f t 5)TDCs (~ factor 5)

• No analog electronics, no
ADCs no ASICs
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ADCs, no ASICs
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Challenge: significant increase in information density 

• bandwidth requirements

g g y

• data reduction 
• front end correction/data 

processing
• calibration 

g2g2

g1

Li f (LOR)

PMT-PET:
420 channels
(current Philips PET) 

Solid state PET:
evtl. > 35.000 channels
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Lines-of-response (LOR)(cu e t ps )



Diode technology, CMOS, 
layout, fab processes, ARC, 
Diode technology, CMOS, 

layout, fab processes, ARC, 
existing
planned/prototype

t ti l
Technology

The tree of scalable DPC technology

wafer level testing…wafer level testing…potential

skill/workflow synergies
component synergies

gy
Level

Silicon
L l

DPC6400-22 DPC3200-22 DPC3200-44DPC3200-44 DPCXXXX-YYDPCXXXX-YYDPC-line DPC-line 

Dicing, Grinding, Packaging, sensor level 
testing….

Dicing, Grinding, Packaging, sensor level 
testing….

DPC-imager DPC-imager 

Level

Sensor readout architecture test boards

DPC3200-22-44DPC6400-22-44 DPC3200-other form factorDPC3200-MR compatibleDPC3200-MR compatible

Sensor
Level

ch
an

ge
s

Sensor readout architecture, test boards, 
firmware library…tile-TEK

DPC3200 22 44DPC6400 22 44 DPC3200 other form factor

Packaging, Cooling, module level testing….Packaging, Cooling, module level testing….

DPC3200 MR compatibleDPC3200 MR compatible

Co
st

s o
f c

Module readout architecture, firmware library… module-TEK

WB-PET Highres-PETHighres-PETSPECT CerenkovCerenkovPET-MRPET-MR microscopy

Detector
(module)Level

System mechatronics, system cooling, system level testing and calibrationSystem mechatronics, system cooling, system level testing and calibration

S t

Data concentration and transfer architecture, firmware library, software

June  2014      ©Philips Digital Photon Counting 28 Large bore PET ring Small bore PET ringSmall bore PET ring Cherenkov arrayCherenkov array Any detector / Any size

Systems
Level



DPC: from sensor to detector module

• 4 DPC sensor arrays (tiles)

• ~ 6.6 x 6.6 cm²

• usable with or w/o
scintillator crystals

bl ll• variable scintillator geometries

• Module board with 
FPGA pre processing capability &FPGA, pre-processing capability &
well defined interface

• local power supplyp pp y

• experimentally cooled to - 40°C
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Rapid PoC: PET prototype, tested @ FZ Juelich

• Inner Diameter (face-to-face): 20 cm

10 d l 4• 10 modules a 4 sensors

• LYSO 4 x 4 x 22 mm²

• Coolable down to 0°C

• Sensor temp. : ~ 5-10°C
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Rapid PoC: PET prototype – timing (CRT)

• LYSO 4 x 4 x 22 mm²

S t ~ 5 10°C• Sensor temp. : ~ 5-10°C

266 ps (FWHM)

Stability of timing signal over 4 months 
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Rapid PoC: PET prototype – image quality (ToF)

• Hot rod phantom (70 mm diameter)
• 1h data acquisition (10-15 MBq 18F)1h data acquisition (10 15 MBq F) 
• Trigger 2 at 7-9°C (internal tile temperature)
• Energy (RE 13% & clustering) and time (TR 390 ps) calibrations applied
• Energy window of [440;660] keV and time window of 3 ns [-1 5;1 5]• Energy window of [440;660] keV and time window of 3 ns [-1.5;1.5] 

With TOF (~ 390 ps)Without TOF 

3.2 mm4.7 mm3.2 mm4.7 mm

PURE/OSEM (0 5 l ) d i ll h i li d
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PURE/OSEM (0.5 mm voxels), no norm., no decay time, all other corrections applied.



Rapid PoC: FARICH prototype detector
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Slide courtesy of S. Kononov, Budker Institute, Novosibirsk



FARICH prototype detector @ CERN

Intrinsic timing

• Intrinsic timing resolution of full (20 x 20 cm²) detector: σ = 48 ps

• Discrimination of protons kaons and pions with high angular resolution• Discrimination of protons, kaons and  pions with high angular resolution

• Curable damage of sensor at primary beam spot
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Data courtesy of S. Kononov, Budker Institute, Novosibirsk



DPC: Scalable Technology Maintains Intrinsic Performance

Many first time rightsy g

PDPC-Moore‘s law

CRT ~ 270 ps*

CRT ~ 270 ps*

CRT ~ 270 ps*

CRT ~ 270 ps*p

20 x 20 cm²
Cherenkov  detector
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CRT ~ 270 ps* with 48 ps σ !



DPC: technology to application (“DPC Lego”)

TEK 1  - POP
(tile TEK)

TEK 2 POCon

POP - proof of principle

TEK 2 - POC
(module TEK)

gr
at

io

POC proof of concept

RapidIn
te

g POC - proof of concept

p
prototyping

I

Application/
Industrialization
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Industrialization
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DPC Sensor Technology Evaluation Kit (STEK) 

> 30 kits installed 

• 3 year contract
• user support by dedicated Ph.D.‘s
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• regular user meetings



Rapid PoP of DOI scheme @SNU
2013/01 Functional & Molecular2013/01 

– PDPC-TEK evaluation kit arrived
2013/02-03

Functional & Molecular 
Imaging System Lab @ SNU

/
– Initial evaluation of PDPC-TEK evaluation kit

2013/04-07
P li i i t f DOI t– Preliminary experiment for DOI measurement

• Changing temperature, tile configuration, several experimental
conditions, light guide size, etc.

2013/082013/08
– Several debugging processes

to acquire better results
• Change of coincidence window 

& irradiation direction, etc. 
2013/09-now

Upper-half 
block

Lower-half 
– Rotation of two detectors 
– Also working to improve the

timing resolution (PMB, Ito et al 2010 & 2013)

block

x y
z
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Courtesy of M.S. Lee, Seoul National University



f llFast testing of various scintillators @ TUD

No fixed scintillation crystals attached freedom of choiceNo fixed scintillation crystals attached – freedom of choice

Water and Peltier cooling

Copper heat sink

Nitrogen flushing

Stable at 0 C

Larger cooling

plate for 8 sensors
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Courtesy of J. Petzold, OncoRay-Technical University Dresden



f llFast testing of various scintillators @ TUD

Coupled different materialsCoupled different materials 

in several shapes to DPC

Monolithic 32x32 mm²

Additional shapes

Compared light yield,Compared light yield, 

energy- and timing resolution

with standard PMT
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Courtesy of J. Petzold, OncoRay-Technical University Dresden



Fast and easy test of GAGG scintillator @ TUM
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Courtesy of K.Shimazoe, Tokio University



DPC opens new opportunities
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Courtesy of K.Shimazoe, Tokio University



DPC with monolithic crystals@ TU Delft
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Rapid Prototyping: DigiPET @ Gent University
D di t d / t b i PET l i thi lithi t lDedicated mouse/rat-brain PET employing thin monolithic crystals: 

DigiPET
Ø1.0 mm

Ø1.2 mm

Ø0.9 mm

Ø0.8 mm

Ø1.5 mm

DigiPET LabPET-8TM

Ø0.7 mm
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S. Espana et al, “DigiPET: Sub-millimeter spatial resolution small animal PET imaging using thin monolithic scintillators”, in preparation



Evaluation of DPC for SPECT @ UGentEvaluation of DPC for SPECT @ UGent

PDPC base unit TEC cooling: 
Peltier + heat sink

1.2 mm

Peltier + heat sink 
+ fan1.4 mm1.0 mm

Frame with
- dSiPM
- Scintillator: 2mm 0.8 mm 0.4 mm

Thermoelectric 
controller

thick LYSO
- thermistor

0.6 mm
Temperature 
display

Tungsten collimator Detector image

0.6 mm
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Courtesy of S. Vandenberghe,  Gent University



PoP for Compton Camera @ Hanyang

Trigger scheme: 2
Validation scheme: 4

Simple back projection 
algorithm

List-mode MLEM 
algorithm 

Integration time: 645 ns (~2.5 tau)
Temperature of the detector: 5°C
Source: 137Cs (662 keV, 8.37 μCi)Source: Cs (662 keV, 8.37 μCi)
Source to detector distance: 2 cm, inner detector distance: 4 cm
Measurement time: 180 minutes, coincidence window: 80 ns
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Courtesy of J.H. Park,  Hanyang University, Seoul



Sensor Technology Evaluation Kit (STEK) Sensor Technology Evaluation Kit (STEK) 

June  2014      ©Philips Digital Photon Counting 48

Graph courtesy of H. Noeldgen, FZ Juelich



DPC Module Technology Evaluation Kit (MTEK) NEW gy ( )

O ti f 2 DPC M d lOperation of 2 DPC Modules
• 2x2 tiles per module
• local voltage regulation
• designed for easy cooling

Local voltage supply allows to 
use longer cabling (1-3 m)

Same sensor control featuresSa e se so co t o eatu es
as in STEK

First kits installed!• 3 year contract
• user support by

dedicated Ph D ‘s
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dedicated Ph.D. s
• regular user meetings



Clinical PET with DPC: towards the first productp
Alpha System @ Cleveland Univ. Hospitals

V ™Vereos™
Digital PET/CT
IntroducedIntroduced
@ RSNA 2013
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Clinical PET with DPC: significantly improved IQg y p

PMT DPC PMT DPC
Images courtesy of Cleveland University Hospitals Cleveland OH USA
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Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA



Clinical PET with DPC: significantly improved IQg y p

PMT

PMT DPC
Images courtesy of Cleveland University Hospitals Cleveland OH USA
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DPCImages courtesy of Cleveland University Hospitals, Cleveland, OH, USA



Clinical PET with DPC: significantly improved IQ

I f Cl l d U i i H i l Cl l d OH USA
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DPCImages courtesy of Cleveland University Hospitals, Cleveland, OH, USA



Clinical PET with DPC: significantly improved IQ

Images courtesy of Cleveland University Hospitals, Cleveland, OH, USA
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Disruptive Technology: How to cross the chasm 

• Understand your PRODUCT CONCEPT

• Make the disruptive technology EXPERIENCABLE

• Demonstrate SCALABILITY

• Demonstrate IMPACT on applicationspp

• select your TARGET MARKET(S)

Peter F. Drucker: „Innovation and Entrepreneurship“  Harper Business; Reprint (2006)
ISBN-10: 0060851139
Geoffrey A. Moore: “Crossing the Chasm”, Harper Business; 2nd Edition (2006)
ISBN-10: 0060517123
Everett M. Rogers: „Diffusion of Innovation“, Free Press; 5th Edition (2003)
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ISBN-10: 0743222091
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The future: What direction to go?g

DPC:  current parameters are optimized for TOF-PET
λ

sens
price

sens.

res.size

speedspeed

timing
dyn. range
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DPC: Directions/Areas of Development

Silicon/ Architecture/ Packaging Applications/
Sensor

Architecture/
Detectors

Packaging pp

• Performance • 1x4 module • TSV • SpectrometryPerformance
(timing, speed, 
granularity, PDE)

1x4 module
• MR 
compatibility

TSV
• MR 
compatibility

Spectrometry
• FLIM
• Material testing

• MR 
compatibility

• Radiation

• Supermodule
• Coinc. board

• Shellcase
• Flexible

t i

• ….?
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• Radiation 
hardness

geometries



Summary
• DPC is a disruptive technology that will induce changes in applications.

• DPC development was triggered by ToF PET and shows significant• DPC development was triggered by ToF-PET and shows significant 
improvements for this application.

• DPC has shown superior performance and ease of use vs. analog SiPMC as s o supe o pe o a ce a d ease o use s a a og S
technology (24 contributions at IEEE2013).

• DPC demonstrated  scalability of technology in maintaining intrinsic 
performance in larger systems:

- PDPC PET test ring
- FARICH detector prototypep yp
- many user PoC’s

• As a CMOS based technology DPC needs volume to succeed, therefore a 
h d l dsystems architecture concept was developed.

• New application areas for DPC are explored by adapted designs.
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Thank you very much for your attention!

Thanks also to:

Thank you very much for your attention!

PDPC:
Thomas Frach
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Pedro Rodrigues

FZ Juelich: 
Siegfried Jahnke
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Torsten Solf
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Simone Beer
Matthias Streun
Günther Kemmerling

Novosibirsk
A.Yu.Barnyakov
M.Yu.Barnyakov
V.S.Bobrovnikov

Oliver Muelhens
Ralf Schulze
Sebastian Reinartz
Ralf Dorscheid

Andre Salomon
Björn Weissler
Pierre Gebhardt
Jakob Wehner

Holger Nöldgen
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S.A.Kononov
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Shu Xu
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Thank you!Thank you!
hili /di i l h i

June  2014      ©Philips Digital Photon Counting 61

www.philips.com/digitalphotoncounting

york.haemisch@philips.com


