Calibrating photon detection efficiency in IceCube

Delia Tosi & Chris Wendt
UW Madison

Outline

- The IceCube detector
- Neutrinos and Cherenkov light detection
- Current energy scale measurement in IceCube
- Lab setup
 - General goal
 - Description
 - Measurement method
 - Linearity check
- Summary & outlook

The IceCube neutrino telescope

- 1 km³ volume
- 86 strings
- 125 m string spacing
- 5160 PMTs
- 17 m vertical spacing between PMTs

Energy scale calibration in IceCube (lab)

- PMT absolute efficiency calibration measured in lab (Chiba)
- A 337 nm laser emits 4 ns pulses into a ball containing nitrogen; Rayleigh scattered light at 90 degrees illuminates PMT
- Number of photons incident is calculated and measured by PD1, number of photons detected is measured
- 16 PMTs measured
 @ 25°C, 337 nm, gain 10⁸

η_{whole} (%) (q_{th} =0.5 q_0)	$A_{eff}(cm^2)$ $(q_{th}=0.5 q_0)$
≈13%	≈80

Calibration and characterization of the IceCube photomultiplier tube, NIMA 618 (2010) 139–152

Energy scale calibration in IceCube (in situ)

- In situ verification of calibration done with:
 - in-ice light sources (flashers, standard candles), muons
 - Ice properties are fold in and may be difficult to decouple
- Minimum ionizing muons stopping in the detector
- 70k events in 30 days of IC79, well reconstructed, zenith: 45-70 degrees
- Compare light seen by DOMs in bottom clear ice in data and simulation \rightarrow 5% excess

Energy Reconstruction Methods in the IceCube Neutrino Telescope, JINST 9 (2014) P03009

Absolute DOM calibration lab setup

Measurement method

- Calibrate PD3 vs NIST photodiode
 - NIST accuracy 0.2% @ 400 nm (Hamamatsu S2281)
- PD3 moved into water near DOM
 - Directly measures photon flux to DOM
 - Only useful when source is bright

Brigl	ht fo	or	PD3
Dim	for	D	MC

PD1 current	PD3 current	DOM rate
~ 50 nA	~ 100 fA	Too high
~ 500 fA	Too low	100-1000 Hz

- Good for both bright and dim sources
- Scales with PD3, extends photon flux measurement to low brightness
- Measure DOM rate, obtain photon flux from PD1 current

- → Measure PD3/PD1 scale factor with source bright
 - Flux = 0.0226 photons/cm²/sec* (PD1 current / fA)

TIPP 2014, Amsterdam

Measurement method

- Calibrate PD3 vs NIST photodiode
 - NIST accuracy 0.2% @ 400 nm (Hamamatsu S2281)
- PD3 moved into water near DOM
 - Directly measures photon flux to DOM
 - Only useful when source is bright

Bright for PD3
Dim for DOM

PD1 current	PD3 current	DOM rate
~ 50 nA	~ 100 fA	Too high
~ 500 fA	Too low	100-1000 Hz

→ PD1 linearity crucial

- PD1 close to source
 - Good for both bright and dim sources
 - Scales with PD3, extends photon flux measurement to low brightness
- Measure DOM rate, obtain photon flux from PD1 current

- Measure PD3/PD1 scale factor with source bright
 - Flux = 0.0226 photons/cm²/sec* (PD1 current / fA)

TIPP 2014, Amsterdam

Data sample from DOM (data taken in air)

Example calculation

DOM PE Rate
PD1 Current → DOM efficiency

- Flux = 0.0226 photons/cm²/sec * (PD1 current / fA)
- DOM rate = 1.88 Hz * (PD1 current / fA)
- DOM rate / flux = (1.88/0.0226) = 83 cm² counts / photon

Example of signal of PD1 and DOM

Remove transients

 Average during "on" time and subtract baseline (average in "off" time)

Very low noise

Photodiodes/readout linearity

- The DOM measurement is done at much lower light level than directly measured with PD3
- We measure this change in flux using PD1, so we need to be sure this PD & readout is linear over many orders of magnitude
- Even the bright flux at PD3 is much dimmer than used for NIST PD calibration
- → Need to measure linearity of photodiodes and amplification chain at multiple light levels.

Photodiode amplification circuit

16 bit ADCs ADS1110 LSB=8—63µV

PD1 circuit similar

6 gains available, selected by relays
 (Panasonic ASX220A4H)
 10μV/nA, 100μV/nA, 1μV/pA, ..., 1μV/fA

Linearity measurement method

- For every cycle, measure $I_A + I_B$, I_{A+B} and calculate mean ratio
- Repeat for several light levels
- Adjust for amplification as needed

Linearity summary

15

Linearity summary

Summary

- Absolute DOM calibration lab setup has been now developed to measure the DOM optical sensitivity as a function of angle and wavelength, in temperature controlled purified water, with several light sources available.
- Strategy: calibrate 10 to 20 of 100 leftover DOMs (time estimate: <1 week/DOM)
- Relative sensitivity of all DOMs deployed is known, so we could correct for it
- Proof of understanding and tool for future development (calibrated sensors in new detectors like PINGU, or HAWC)

