

Development and Evaluation of Event-Driven SOI Pixel Detector for X-ray Astronomy

TIPP2014 @ Amsterdam, The Netherlands 2014.06.02-06

Ayaki Takeda (atakeda @cr.scphys.kyoto-u.ac.ip)

Y.Arai (KEK/IPNS), T.G.Tsuru, T.Tanaka, S.Nakashima, H.Matsumura (Kyoto Univ.), K.Mori, Y.Nishioka, R.Takenaka (Miyazaki Univ.), T.Kohmura (Tokyo Univ. of Scie.), T.Imamura, A.Iwata, T.Ohmoto, T.Maeda (A-R-Tec Corp.), S.Kawahito (Shizuoka Univ.), and SOIPIX Group.

Outline

- Introduction

-> SOI Pixel Detector for Future X-ray Astronomy (XRPIX)

- XRPIX Design Description
- XRPIX Performance Tests
- Summary

Standard Imaging Spectrometer of modern X-ray astronomical satellites

- Fano limited spectroscopy with the readout noise ~3 e- (rms).
- Wide and fine imaging with the sensor size of ~20 – 30 mm, pixel size of ~30 µm sq.
- High QE by BI and thick depletion (200 µm for ASTRO-H).

X-ray CCD

Standard Imaging Spectrometer of modern X-ray astronomical satellites

X-ray CCD

- Fano limited spectroscopy with the readout noise ~3 e- (rms).
- Wide and fine imaging with the sensor size of ~20 30 mm, pixel size of ~30 µm sq.
- High QE by BI and thick depletion (200 µm for ASTRO-H).

- Non X-ray background above 10 keV is too high to study faint sources.
- The time resolution is too poor (~sec) to make fast timing observation of time variable source.

Introduction of SOI Pixel Detector

- A monolithic pixel detector with Silicon-on-Insulator (SOI)
 CMOS Technology -> 0.2 µm fully-depleted (FD) SOI pixel process
- SOI Pixel Detector (SOIPIX) : Processed by LAPIS Semi. Co., Ltd.

SOIPIX Advantages

- No mechanical bump bonding
- -> High Density, Low Parasitic Capacitance, High Sensitivity
- Standard CMOS circuit can be built
- Based on industrial standard technology

<u>SOI Pixel Process</u> New Process to make pixel detector with SOI technology joint development with LAPIS Semi. Co., Ltd.

<u>Our group presentations:</u> H.Matsumura (next presentation), T.Miyoshi (5 Jun, I.b 12:20 –), S.Honda (6 Jun, I.b 14:00 –), K.Kasahara (6 Jun, I.d 15:00 –)

TIPP2014 @ Amsterdam, The Netherlands - A.Takeda - Jun. 5, 2014

<u>Basic Components</u> Circuit Layer : ~40 nm

Buried Oxide (BOX) : 200 nm Sensor Layer : 100 – 725 µm

SOI Pixel Detector for Future X-ray Astronomy

Design Specification : XRPIX2b

Optimization of a pixel design / Confirmation of uniformity
 It is based on the design of XRPIX1/1b/2.

Design Specification : XRPIX3

Components

- Chip Size : 2.9 mm sq. (Effective Area : 1.0 mm sq.)
- Pixel Size : 30 um sq.
- # of Pixel : 32 x 32 (= 1,024)
 - -> Normal : 32 x 16 (Left) , CSA : 32 x 16 (Right)

First prototype of XRPIX CSA circuit. Comparison of Normal and CSA pixel. (Fabricated Jun, 2013)

Pixel Circuit : XRPIX3

- Normal and CSA pixels have different circuit configuration of preceding stage.
 - -> Normal : Source Follower (SF) by Common-Drain of a PMOS transistor (the same circuit as XRPIX2b)
 - -> CSA : pre-amplifier by Common-Source of a NMOS transistor and a feedback capacitance (1 fF)

CSA circuit improves the S/N ratio to the circuit noise in the following stages.

TIPP2014 @ Amsterdam, The Netherlands – A.Takeda – Jun. 5, 2014

TRIG_COL (SR)

TRIG_ROW (SR)

Normal and CSA Circuit Calibration

- Calibration plot by ⁵⁵Fe and ¹⁰⁹Cd.

- The pixel circuit with CSA works good. (3.4 times higher gain)

Energy Calibration Gain Height (ADU) Normal : 5.2 μ V/e-**CSA** Pixel CSA : 17.9 µV/e-17.9 µV/e-2b : 7.0 µV/e– x 3.4 XRPIX1b : 6.2 µV/e-Since parasitic capacitance of sense XRPIX1 : 3.6 µV/euls node increased, the gain fell from 300 XRPIX2b by XRPIX3. 200 Observed gain (17.9 μ V/e–) is 100 lower than the design (50 μ V/e–), Normal Pixel 5.2 μV/ewhich would be due to parasitic capacitance. 25 20 30 15 5 10 Energy (keV) 1 Analog Digital Unit (ADU)

 $= 244 \ \mu V (= 1 \ V / 12 \ bit)$

10

Comparison of Normal and CSA Pixel

 The CSA Pixel succeeded in improvement of energy resolution. Comparison of ⁵⁵Fe energy spectrum at Normal and CSA (obtain by Frame readout mode, not use Event-Driven)
 Readout noise (-> obtained from the pedestal peak)
 Normal : 76 e- (rms)

Comparison of Normal and CSA Pixel

- The CSA Pixel succeeded in improvement of energy resolution.
 Comparison of ⁵⁵Fe energy spectrum at Normal and CSA (obtain by Frame readout mode, not use Event-Driven)
 - -> Readout noise (-> obtained from the pedestal peak)

- The following figure show the flow chart.

(i) X-ray signal is detected by a pixel.

(ii) If the X-ray signal exceeds a threshold voltage, trigger signals are transferred to row and column direction.

(iii) OR'ed signal (TRIG_OUT) of the trigger is generated.

(iv) By receiving the TRIG_OUT signal, USER-FPGA start to read the hit address information from the row and column shift registers.COL_ADDR

(v) The USER-FPGA accesses the hit pixel directly by asserting the obtained address.

(vi) The USER-FPGA reads out the analog voltage (signal and pedestal levels) through the ADC.

(vii) Finally, the obtained digital data is transmitted to the DAQ-PC.

Event-Driven Calibration

- Calibration plot by ⁵⁵Fe, ²⁴¹Am, ¹⁰⁹Cd, and ¹³³Ba

some problems

-> The gain is different. / There is offset.

The linearity of fitting decreases and variation is large. (There is a problem in a comparator circuit. -> modification is required...)

The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).
 The analog signal has 4 problems.

The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).
 The analog signal has 4 problems.

The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).
 The analog signal has 4 problems.

The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).
 The analog signal has 4 problems.

The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).
 The analog signal has 4 problems.

1. Reason for Negative Pulse

- Wiring of an analog signal line (COL_OUT) and a trigger signal (COL_TRIG_OUT) adjoined each other with the pixel layout. (Distance : 0.4 μ m, Length : 4.6 mm) -> This has large parasitic capacitance by wiring (~ 50 fF).
- This is the phenomenon of appearing only when a pixel is specified and observed.
 It has checked also by HSpice simulation.

COL_TRIG_OUT → **M** ← COL_OUT(Analog Signal)

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.
- However, it is equivalent to offset of a calibration plot (~25 mV).
 This is not a serious problem.

3. Long Logic Converting Time 4. Fluctuation of an Analog Signal

- Logic converting time is long (typ : \sim 50 ns).
- As the difference of a signal and a threshold level is small, logic converting time becomes longer.
 - -> This is the characteristic of a comparator circuit.
- A difference appears in an observation level.

3. Long Logic Converting Time 4. Fluctuation of an Analog Signal

The present comparator circuit ...

- -> Inverter chopper type (CMOS Inverter circuit)
 (to apply the current to this circuit at the time of logic reversal.)
 -> Low power
- When a signal and the difference of a threshold level are small, movement of the electric charge of an inverter circuit is small, and time is needed for logic conversion.
- Since the intermediate state of logic flows current most in a CMOS circuit, long logic inversion time affects surrounding analog circuitry.
 - -> It has checked also by HSpice simulation.
- Change of a circuit configuration is required.

19

Summary

- We have been developing Event-Driven SOIPIX sensor, "XRPIX", for future X-ray astronomical satellite mission.
- Realize the Event-Driven readout mode and very low non-X-ray background by the function of the trigger signal output.
- By CSA pixel circuit, we improved energy resolution successfully.
 - -> The readout noise : 33 e- (rms) Mn-Kα @ 5.9 keV : 300 eV / 5 % (FWHM)
- We already successfully obtained X-ray data in Event-Driven mode.
 However, it has 4 problems.
 - -> The comparator circuit modification is required.

Backup

© Rey.Hori

Smart CutTM

LAPIS 0.2 µm FD-SOI Pixel Process

Process	0.2µm Low-Leakage Fully-Depleted SOI CMOS (LAPIS)
	1 Poly, 5 Metal layers, MIM Capacitor (1.5 fF/um ²), DMOS
	Core (I/O) Voltage = 1.8 (3.3) V
SOI wafer	Diameter: 200 mm
	Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick
	Buried Oxide: 200 nm thick
	Handle wafer: Cz(n) ~700 Ω-cm,
	FZ(n) ~7 kΩ-cm, FZ(p) ~40 kΩ-cm
Backside	Mechanical Grind, Chemical Etching, Back side Implant,
	Laser Annealing and Al plating

Design Specification : Pixel Circuit

Timing Diagram

