

Development and Evaluation of Event-Driven SOI Pixel Detector for X-ray Astronomy ឭଏ䈜䉎䉝䊅䊨䉫࿁〝

TIPP2014 @ Amsterdam, The Netherlands 2014.06.02-06 䊶䉟䊮䉻䉪䉺⚿ว࿁〝

Ayaki Takeda (atakeda @cr.scphys.kyoto-u.ac.jp) 䊶㪣㪪㪠㐿⊒䉮䊮䉰䊦䊁䉞䊮䉫

Y.Arai (KEK/IPNS), T.G.Tsuru, T.Tanaka, S.Nakashima, H.Matsumura (Kyoto Univ.), wi K.Mori, Y.Nishioka, R.Takenaka (Miyazaki Univ.), T.Kohmura (Tokyo Univ. of Scie.), T.Imamura, A.Iwata, T.Ohmoto, T.Maeda (A-R-Tec Corp.), S.Kawahito (Shizuoka Univ.), and SOIPIX Group. \blacksquare $^{\circ}$ $^{\circ$ \blacksquare

Outline

- Introduction

 -> SOI Pixel Detector for Future X-ray Astronomy (XRPIX)

- **XRPIX Design Description**
- **XRPIX Performance Tests**
- **Summary**

Standard Imaging Spectrometer of modern X-ray astronomical satellites

- Fano limited spectroscopy with the readout noise \sim 3 e- (rms).
- Wide and fine imaging with the sensor size of \sim 20 - 30 mm, pixel size of \sim 30 µm sq.
- High QE by BI and thick depletion (200 µm for ASTRO-H).

X-ray CCD

Standard Imaging Spectrometer of modern X-ray astronomical satellites

- Fano limited spectroscopy with the readout noise \sim 3 e- (rms).
- Wide and fine imaging with the sensor size of \sim 20 - 30 mm, pixel size of \sim 30 µm sq.
- High QE by BI and thick depletion (200 µm for ASTRO-H).

- Non X-ray background above 10 keV is too high to study faint sources.

X-ray CCD

- The time resolution is too poor (~sec) to make fast timing observation of time variable source.

Introduction of SOI Pixel Detector

- A monolithic pixel detector with Silicon-on-Insulator (SOI) CMOS Technology \rightarrow 0.2 μ m fully-depleted (FD) - SOI pixel process
- SOI Pixel Detector (SOIPIX) : Processed by LAPIS Semi. Co., Ltd.

SOIPIX Advantages

- No mechanical bump bonding
- -> High Density, Low Parasitic Capacitance, High Sensitivity
- Standard CMOS circuit can be built
- Based on industrial standard technology

Basic Components

Circuit Layer : ~40 nm Buried Oxide (BOX) : 200 nm Sensor Layer : $100 - 725$ μ m

SOI Pixel Process New Process to make pixel detector with SOI technology joint development with LAPIS Semi. Co., Ltd.

Our group presentations: H.Matsumura (next presentation), T.Miyoshi (5 Jun, I.b 12:20 -), S.Honda (6 Jun, I.b 14:00 -), K.Kasahara (6 Jun, I.d 15:00 -)

SOI Pixel Detector for Future X-ray Astronomy

Design Specification : XRPIX2b

- Optimization of a pixel design / Confirmation of uniformity \rightarrow It is based on the design of XRPIX1/1b/2.

Design Specification : XRPIX3

Components

- Chip Size : 2.9 mm sq. (Effective Area : 1.0 mm sq.)
- Pixel Size : 30 um sq.
- $-$ # of Pixel : 32 x 32 (= 1,024)
	- \rightarrow Normal : 32 x 16 (Left), CSA : 32 x 16 (Right)

First prototype of XRPIX CSA circuit. Comparison of Normal and CSA pixel. (Fabricated Jun, 2013)

Pixel Circuit : XRPIX3

- Normal and CSA pixels have different circuit configuration of preceding stage.
	- -> Normal : Source Follower (SF) by Common-Drain of a PMOS transistor (**the same circuit as XRPIX2b**)
	- -> CSA : pre-amplifier by Common-Source of a NMOS transistor

and a feedback capacitance (1 fF)

 CSA circuit improves the S/N ratio to the circuit noise $TRIG$ COL (SR) in the following stages. TRIG ROW (SR) ι
TRIG_OUT (OR):

Normal and CSA Circuit Calibration

- Calibration plot by $55Fe$ and $109Cd$.

- The pixel circuit with CSA works good. (3.4 times higher gain)

TIPP2014 @ Amsterdam, The Netherlands - A.Takeda - Jun. 5, 2014 $\left| = 244 \mu V (= 1 V / 12 \text{ bit}) \right|$ 10

Comparison of Normal and CSA Pixel

- The CSA Pixel succeeded in improvement of energy resolution. Comparison of 55Fe energy spectrum at Normal and CSA (obtain by Frame readout mode, not use Event-Driven)
	- \rightarrow Readout noise (\rightarrow obtained from the pedestal peak)

Comparison of Normal and CSA Pixel

- The CSA Pixel succeeded in improvement of energy resolution. Comparison of 55Fe energy spectrum at Normal and CSA (obtain by Frame readout mode, not use Event-Driven)
	- \rightarrow Readout noise (\rightarrow obtained from the pedestal peak)

The following figure show the flow chart.

(i) X-ray signal is detected by a pixel.

(ii) If the X-ray signal exceeds a threshold voltage, trigger signals are transferred to row and column direction.

(iii) OR'ed signal (TRIG_OUT) of the trigger is generated.

(iv) By receiving the TRIG_OUT signal, USER-FPGA start to read the hit address information from the row and column shift registers. COL ADDR

(v) The USER-FPGA accesses the hit pixel directly by asserting the obtained address.

(vi) The USER-FPGA reads out the analog voltage (signal and pedestal levels) through the ADC.

(vii) Finally, the obtained digital data is transmitted to the DAQ-PC.

Event-Driven Calibration

- Calibration plot by $55Fe$, $241Am$, $109Cd$, and $133Ba$

some problems

\rightarrow The gain is different. / There is offset.

 The linearity of fitting decreases and variation is large. (There is a problem in a comparator circuit. -> modification is required...)

- The waveform of an oscilloscope when X-rays enter $(^{109}Cd$: 22.2 keV). \rightarrow The analog signal has 4 problems.

- The waveform of an oscilloscope when X-rays enter $(^{109}Cd$: 22.2 keV). \rightarrow The analog signal has 4 problems.

- The waveform of an oscilloscope when X-rays enter $(^{109}Cd$: 22.2 keV). \rightarrow The analog signal has 4 problems.

- The waveform of an oscilloscope when X-rays enter $(^{109}Cd$: 22.2 keV). \rightarrow The analog signal has 4 problems.

- The waveform of an oscilloscope when X-rays enter $(^{109}Cd$: 22.2 keV). \rightarrow The analog signal has 4 problems.

1. Reason for Negative Pulse

- Wiring of an analog signal line (COL_OUT) and a trigger signal (COL_TRIG_OUT) adjoined each other with the pixel layout. (Distance : 0.4 μ m, Length : 4.6 mm) \rightarrow This has large parasitic capacitance by wiring (\sim 50 fF).
- This is the phenomenon of appearing only when a pixel is specified and observed. -> It has checked also by HSpice simulation.

COL_TRIG_OUT → | < COL_OUT(Analog Signal)

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.

2. About the Difference in a Signal Level

- The reason for a cause is not understand yet.
- However, it is equivalent to offset of a calibration plot $(\sim 25 \text{ mV})$. -> This is not a serious problem.

3. Long Logic Converting Time 4. Fluctuation of an Analog Signal

- Logic converting time is long (typ $: \sim 50$ ns).
- As the difference of a signal and a threshold level is small, logic converting time becomes longer.
	- -> This is the characteristic of a comparator circuit.
- A difference appears in an observation level.

3. Long Logic Converting Time 4. Fluctuation of an Analog Signal

The present comparator circuit ...

VDD18 VB_SF

- -> Inverter chopper type (CMOS Inverter circuit) (to apply the current to this circuit at the time of logic reversal.) -> Low power
- When a signal and the difference of a threshold level are small, movement of the electric charge of an inverter circuit is small, and time is needed for logic conversion.
- Since the intermediate state of logic flows current most in a CMOS circuit, long logic inversion time affects surrounding analog circuitry.
- -> It has checked also by HSpice simulation.
- Change of a circuit configuration is required.

19

Summary

- We have been developing Event-Driven SOIPIX sensor, "XRPIX", for future X-ray astronomical satellite mission.
- Realize the Event-Driven readout mode and very low non-X-ray background by the function of the trigger signal output.
- By CSA pixel circuit, we improved energy resolution successfully. \rightarrow The readout noise : 33 e– (rms)

Mn-Kα @ 5.9 keV : 300 eV / 5 % (FWHM)

- We already successfully obtained X-ray data in Event-Driven mode. -> However, it has 4 problems.
	- -> The comparator circuit modification is required.

Backup

 $©$ Rey.Hori

Smart Cut™

LAPIS 0.2 μm FD-SOI Pixel Process

Design Specification : Pixel Circuit

Timing Diagram

