Contents - * Motivation - * The COMET Experiment - * Tracking Resolution vs Low Momenta - * Straw Tracker in Vacuum - Light Straw Tube - * Prototyping - * Status & Prospects ### Motivation ## The COMET Experiment - * An Experiment to Search for " μ " at J-PARC - Muon-to-Electron Conversion = Lepton Flavour Violation - Very sensitive to the TeV-scale new physics, BSM - → Complementary and Competitive to the LHC * Signal - * $E_{\rm e} = m_{\mu} B_{\mu} \sim 105 {\rm MeV}$ - * Coherent Process ($Z_{\text{ini}}=Z_{\text{end}}$) * BGs - Prompt (Beam-related) - Decay in Orbit (DIO) - * Radiative π/μ -capture - Decay in Flight (DIF) - Cosmic-rays ## The COMET Experiment - An Experiment to Search for " μ " at J-PARC - Muon-to-Electron Conversion = Lepton Flavour Violation - Very sensitive to the TeV-scale new physics, BSM - → Complementary and Competitive to the LHC * Signal - * $E_{\rm e} = m_{\mu} B_{\mu} \sim 105 {\rm MeV}$ - Coherent Process ($Z_{\text{ini}}=Z_{\text{end}}$) - **Prompt (Beam-related)** - **Decay in Orbit (DIO)** Iomentum Resolution is Essential !!! ## The COMET Experiment - * An Experiment to Search for " μ " at J-PARC - Muon-to-Electron Conversion = Lepton Flavour Violation - Very sensitive to the TeV-scale new physics, BSM - → Complementary and Competitive to the LHC * Signal - * $E_{\rm e} = m_{\mu} B_{\mu} \sim 105 {\rm MeV}$ - * Coherent Process ($Z_{\text{ini}}=Z_{\text{end}}$) N Need to achieve, at least, < 200 keV/c for 100MeV/c e- Vu Momente related) ## Tracking detector in Vacuum * Old * GM tube, bubble chamber, cloud chamber, etc. * Modern - * Single volume gaseous detector - * MWPC → Drift Chamber / TPC * New - * Gaseous detector is modularized in the fiducial tracking volume like MEG, etc. - Rest space is filled with light gas (He) * Challenge - Modularized gaseous detector - But rest space is evacuated !!! - Ultimate stye of Light Gaseous Tracker like NA62, etc. #### Straw Tracker in Vacuum #### The COMET Straw Tracker * Planner wire-chamber-base tracker in Vacuum → Straw Tracker - * Five super-layers (module) consist of 4 planes of straw tubes - * 2 planes for *x*-coordinate and 2 planes for *y*-coordinate, each layers are staggered by half a cell to solve the left-right ambiguity. - * All tracker modules are installed in vacuum. - Timing(Trigger) is provided by the electromagnetic calorimeter. #### The COMET Straw Tracker #### * Cross-section view #### The COMET Straw Tracker #### * Lateral view ## Straw Development Strategy * Three-staged strategy to develop the thinner straw tube - * Tracker development is ongoing in parallel to the straw development - Assembly prototype - - Using NA62 straws - Installation/Assembly studies - Vacuum-handling studies - Gas-manifold optimization 2nd trial 12µm-thick+ 70nm Al deposition - Assembly technique, gasmanifold optimization, are done by using NA62 straws. - NA62 straws will be replaced by COMET straw (1st) & (2nd). - Have a look at straw properties in vacuum and compare. - Final decision will be made. ## Status of straw development * 1st trial (20µm-thickness + 70nm Al deposition) was successfully done. - Pressure test was performed, deformation starts around 6 bar and breaks out over 7 bar → enough tough for our usage. - * as soon as it will arrive at KEK, NA62 straws in the assembly prototype will be replaced by this COMET straw "1st trial version" - * then straw mechanical properties in vacuum will be studied. - * **2nd trial** (12μm-thickness + 70nm Al deposition) is ongoing. ## **Assembly Prototype** - * "1-to-1 Prototype" using NA62 straw is constructed. - * Completely same as the actual detector other than the straw tube. - * Al support, Vacuum operation, assembly R&D. - * Performance study will be done by RI, CR, and testbeam. - Assembly studies by this prototype will give important feedbacks to the final tracker * In particular, special feedthrough for straw has to be developed to apply tension as well as provide gas flow and signal feedthrough. # Feedthrough/Tensioning system * eg. Pretensioning on straw by Newly developed feedthrough system Hajime NISHIGUCHI (KEK) "COMET Straw Tracker" ## Feedthrough/Tensioning system * eg. Pretensioning on straw by Newly developed feedthrough system Hajime NISHIGUCHI (KEK) "COMET Straw Tracker" # Feedthrough/Tensioning system * eg. Pretensioning on straw by Newly developed feedthrough system Hajime NISHIGUCHI (KEK) "COMET Straw Tracker" ## Current status of assembly prototype - * Prototype was completed just last month, then now HV conditioning and some fundamental studies are ongoing; gain, efficiency, resolution, etc. - In parallel to the fundamental studies, preparation for the vacuum test is also ongoing; - * straw mechanical properties in vacuum is important study item for this prototype. # Final prototyping strategy and schedule | | FY2014 | | | FY2015 | FY2016 | |--------------------------|--------------------------------------|-----|----------------------------------|-----------------|--------| | assembly
prototype | fundamental
study | | vacuum | | | | straw trial | 1st | 2nd | → final decision on straw choice | | | | front-end
development | prototype-2 | | final
design | mass production | | | manifold
design | optimization | | | | · | | real
detector | design finalize by the end of FY2014 | | | construction | | # Final prototyping strategy and schedule | | FY2014 | | | FY2015 | FY2016 | | |--------------------------|--------------------------------------|-----|------------------------------------|---|------------|--| | assembly
prototype | fundamental
study | | straw test in
vacuum
→ final | , | Poster-157 | | | straw trial | 1st | 2nd | decision on straw choice | "ROESTI: A Front-end Electronics for Straw Tube Tracker in COMET" by Kazuki UENO | | | | front-end
development | prototype-2 | | final design | mass production | | | | manifold
design | optimization | | | | | | | real
detector | design finalize by the end of FY2014 | | | consti | ruction | | #### Conclusions - * Straw Tracker development for COMET is ongoing. - * Searching for μ - $N \rightarrow e$ -N, Lepton Flavour Violation, at J-PARC - * Should be operational in vacuum, Should be made by light material - * Good momentum resolution (<200 keV/c) for 100MeV electron - * To improve the material budget, straw development is ongoing. - * 1st trial (20µm + Al-cathode) was successfully done. - * 2nd trial (12μm) is ongoing - * Assembly prototype (1-to-1 size) is constructed with NA62 straws - * assembly technique development / gas manifold optimization - * replacing the NA62 straws by COMET straws (1st/2nd), technical decision will be done by straw mechanical studies in vacuum - * Aiming to finalize the design by FY2014, and to complete the construction by FY2016. appendices ### COMET Experiment - Overview - #### **High Intensity Muon** Pion capture and muon transport by superconducting solenoids would provide high beam intensity. #### **Pulsed Muon Source** Beam pulsing is very important in order to suppress prompt BG. Pulse Separation should be ≥ 1µsec. #### **Special Muon Transport** A muon beam line should be sufficient long to eliminate pions in a muon beam, and dedicated to reject DIO electrons. #### **High Resolution Detectors** Endpoint of spectrum of DIO electron comes to the signal region. Good σ_E is mandatory. ## COMET Experiment - Overview - ### **COMET Detector Apparatus** ## **COMET** Expected Sensitivity * Single Event Sensitivity (2×10⁷ sec running): $$\mathcal{B}(\mu^- + \text{Al} \to \text{e}^- + \text{Al}) \sim \frac{1}{N_{\mu} \cdot f_{\text{cap}} \cdot A_{\text{e}}}$$ - * N_{μ} is a # of stopped muons - * 2.0×10¹⁸ muons - * f_{cap} is a fraction of muon capture - * 0.6 for aluminum - * $A_{\rm e}$ is the detector acceptance - ***** 0.031 | total # of p's | 8.5×10^{20} | |------------------------------|----------------------| | μ yield / p | 0.0035 | | μ stopping ε | 0.66 | | # of stopped μ's | 2.0×10 ¹⁸ | Single Event Sensitivity 2.6×10⁻¹⁷ Upper Limit (CL.90) 6.0×10⁻¹⁷ ## Staging Approach for the COMET Realization full COMET (phase-II) (phase-I) #### Straw tube - Original design (CDR) employed the "doubly-wound" straw tube. - * Changed to the new straw: "straight-adhesion" straw tube. - * New adhesion style has been developed by JINR group for NA62 experiment at CERN, enabled by ultrasonic welding method. - * Ads.: Small gas leakage due to short length of seam, small amount of material due to no glue is needed, possibly make it thinner, mass-production by JINR group in house → Big advantage for cost - * Issue; Straw-wall thickness and material - NA62 straw ; 9.75mm diameter / 36µm-thickness mylar + Cu deposition - → Thicker and heavier than our requirement, Not acceptable ## Chamber active gas * Ar-C₂H₆ (50:50) is employed as default gas mixture. "COMET Straw Tracker" ## Straw Operation in Vacuum * 1-to-1 (but doubly-wound straw) length prototype test was done ## Straw Operation in Vacuum #### Deformation Study - Surface deformation is measured by over-pressurizing by 2 bar in air. - * Same measurement was done by 1 bar operation in vacuum. - * Both results are in good agreement, and 67 μm of max. deformation was found → enough small #### Gaseous Leakage Study - * Pressure build-up in vacuum is measured as a function of duration after pump closed. - Same measurement was done by measuring the pressure drop after 2 bar over-pressurized. - * 0.3 cc/sec of leakage → enough small