

TOWARDS A L1 TRACKING TRIGGER FOR THE ATLAS EXPERIMENT

ALESSANDRO CERRI ON BEHALF OF THE ATLAS COLLABORATION

INTRODUCTION

Expedited tracking planned for later stages of ATLAS trigger (FTK project@TIPP14: Gentsos, Luciano, Sotiropoulou, Volpi)

ATLAS intends to complement with a L1 Trigger implementation to improve event selection (LHCC-2012-022)

- Context
 - LHC & ATLAS Upgrades
 - Why tracking in the ATLAS Trigger system?
- Performance
- Architecture Proposals
 - Detector read-out
 - Track finding and Pattern Matching

3-tier system

- Level-1 → HW implementation
- L2+L3 commercial CPU
- L1→HLT via Regions of Interest

LHC FUTURE

WHAT PHYSICS (a) 5×10^{34} ?

- Goal: ∫ *L*~3 ab⁻¹ i.e. 300 fb⁻¹/yr
- Access to large SUSY phase space (ATL-PHYS-PUB-2013-011):
 - Direct χ (± and 0) production \rightarrow 3 ℓ (gauge boson mediated)
- $7\sigma H \rightarrow \mu\mu$ with S/B~3×10⁻³

Challenging conditions: $<\mu>\sim140$

PHASE I TRIGGER UPGRADES (2019)

Phase 0:

- $L2 + EF \rightarrow HLT$
- FTK: global tracking for HLT (installation completed with phase I)
- **Topological** capabilities at
- Improved pile-up suppression In L1Calo

Phase I:

- Refine L1Calo granularity (see I. Hristova's talk)
- New muon small wheel (NSW)

Reduced fakes, improved resolution

10

BOL

8

BML 6

BIL

2

June 5th 2014

A. Cerri – University of Sussex

ATLAS FOR HL-LHC (2023)

Software and Computing

- Detector:
 - Brand-new Si detector
 - Inner tracker (ITK): pixel+strip
 - LAr calo electronics
 - Muon drift chamber
 - Forward detector
 - Shielding
- Trigger:
 - L1 Track Trigger (L1TT)
 - µ barrel & big wheel electronics

 $<\mu>\sim 140$ @ 25ns x-rate $\Rightarrow 2-3\times 10^{16}$ 1 MeV neutron_{eq}/cm²

INNER DETECTOR

• Facing x5 fluence

Higher η coverage

- Lighter
- Up to 14 hits/track

Pixels

- 50×400→
 25×150/50×250 μm²
- 1MHz Readout

Double-sided strips

- 6 \rightarrow 74 Mchan.
- 2.45-4.9 cm
- 74.5 µm pitch
- 40 µrad st. angle
- Slower read-out (chip size & placement)

500 KHz → 200 KHz

• Full readout after L1 decision

June 5th 2014

L1 TRACK TRIGGER

Object(s)	Trigger	Estimated Rate	
		no L1Track	with L1Track
e	EM20	200 kHz	40 kHz
γ	EM40	20 kHz	$10\mathrm{kHz^*}$
μ	MU20	$>40\mathrm{kHz}$	10 kHz
au	TAU50	50 kHz	20 kHz
ee	2EM10	40 kHz	$< 1 \mathrm{kHz}$
$\gamma\gamma$	2EM10	as above	${\sim}5kHz^*$
eμ	EM10_MU6	30 kHz	$< 1 \rm kHz$
$\mu\mu$	2MU10	4 kHz	$< 1 \mathrm{kHz}$
au au	2TAU15I	40 kHz	2 kHz
Other	JET + MET	$\sim 100kHz$	$\sim 100 kHz$
Total		$\sim 500 kHz$	$\sim 200 kHz$

 $\mathcal{L}=5\times10^{34}$, based on L0 Rol information

- Track association \Rightarrow improve μ , τ and EM selection:
 - ×10 rate reduction on EM_18
 - 8% \rightarrow 30% (E_T>20 GeV) τ efficiency with 20 KHz budget

ATLAS HL-LHC TRIGGER ARCHITECTURE

STRIP TRACKER READOUT

New trigger level \Rightarrow new readout buffer layer Implemented in Q4/2013 "ABC130" tracker FE ASIC

READOUT LATENCY

- Multiple ABC130 daisy-chained
- Bottleneck addressed by:
 - Prioritization of R3 vs L1A data
 - Increase HybridChipController BW $(160 \rightarrow 320 \text{ Mbps})$
 - Increase FIFO depth
 - Increase daisy-chain links

READOUT LATENCY

13

LATENCY BY GEOGRAPHY

Longer daisy-chains (up to 12) in EC detectors prioritisation is not enough!

END-CAP RING 6

Exploit:

- 1. Redundant daisy-chain link
- 2. Increase in off-detector bandwidth

Problem solved with optimised use of existing resources

June 5th 2014

A. Cerri – University of Sussex

FINDING TRACKS: FTK STYLE

L1/R3 data

L1/R3 data

L0 Rols

ITK RODs

A schema similar to FTK

Pre

processor

L1 Track logic

Pattern

matching

Track

fitting

L1A

• L1TT input B/W:

 Limit with fine η×φ segmentation:

p_T>4 GeV ↑

0.05×0.05 (126000 towers)

• How many patterns?

$$N_{
m Pattern} \propto N_{
m Pileup} \cdot rac{1}{p_{
m T}} \cdot N_{
m Layer}$$

• Current FTK design based on 8000 AMChip6 \Rightarrow 10⁹ patterns (higher capacity AMChip evolutions possible \rightarrow Gentsos presentation)

staves

Rol

LOA

(R3 request)

- FTK \rightarrow L1TT:
 - Same detector
 - x2-3 pile-up increase
 - 8/12 → 12/14 layers

Possible with mitigation from RoI-based concept? Increase pT threshold?

June 5th 2014

ALTERNATIVE APPROACH

RoI-less hierarchical approach:

- Limit off-detector data flow:
 - On-detector "stub" finding based on double-sided detectors
 - Match 2-3 "stubs" for further pT discrimination
 - Fast cluster-finding in pixel detector
- Compatible 4 Gb/s readout rate per detector stave
- Variation (sketch below): detector layer doublets at 4-5 mm distance

CONCLUSIONS

- Tracking at L1
 - x3-x10 rejection improvement
- 6/30 µs L0/L1 latency splitting possible with proposed double buffering scheme
 - 1–10% of detector R3
 - 500 kHz L0 and 200 kHz L1 rates
- Additional flexibility in the ATLAS TDAQ pipeline

Next steps: 2015: full specifications for L1TT 2016: Inner TracKer TDR

BACK-UP MATERIAL

June 5th 2014

L0/L1 LATENCIES

	Latency (µs)
From LOA	6
Rol Mapping \rightarrow ITK	1.25
Region readout from ITK	6
Transmission to L1TT	2
Tracking in L1TT	6
Merge L1 triggers from L1A	1
Distribute L1A	1
Total	23.25

- Optimal use of MDT buffers → 30 µs latency
- L1Track budget:
 - R3: Regional Readout Requests data extraction
 - Data processing
 Depends (non-linearly) on:
 - L0 rate
 - #Rol
 - Available readout BW