Upgrade of the LHCb VErtex LOcator

Kazu Akiba – Federal University of Rio de Janeiro On behalf of the VELO Upgrade Project

International Conference on Technology and Instrumentation in Particle Physics

2 – 6 June 2014 / Amsterdam, The Netherlands

"Instrumentation as enabler of Science"

The current VELO

Moves away every fill and centers around the beam with self measured vertices

Poster:

The LHCb Vertex Locator - Performance and Radiation Damage https://indico.cern.ch/event/192695/ contribution/7

The current VELO

Moves away every fill and centers around the beam with self measured vertices

Operates in vacuum

Separated from primary vacuum by thin RF foil with complex shape

-- Protection from beam pickup

Poster:

The LHCb Vertex Locator - Performance and Radiation Damage

https://indico.cern.ch/event/192695/

contribution/7

The current VELO

Moves away every fill and centers around the beam with self measured vertices

pitch_{min} = 40 μm

Separated from primary vacuum by thin RF foil with complex shape
-- Protection from beam

Poster:

The LHCb Vertex Locator

- Performance and Radiation Damage https://indico.cern.ch/event/192695/ contribution/7

Kazu Akiba TIPP2014

pickup

Why upgrade LHCb

- Currently LHCb can cope with a inst. lumi. higher than design
 - LHC still provides more than what we can handle:

- Current detector is limited due to 1 MHz readout.
- Higher Luminosities do not translate to higher physics: need smart Trigger.
- The upgrade is planned as a major Trigger/Readout upgrade:
 - From 1 to 40 MHz full readout → Every collision read out to a computing farm
 - Higher instantaneous Luminosity Higher occupancies/Faster Ageing
 - Change all the front-end!

UFRJ

VEnn LHCK

Timeline

Upgrade TDR module **UPGRADE HCb** production PGRADE Sensor Assembly production installation LS2 L\$1 25 ns 50 ns 25 ns Start-up 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 ... 20xx **LHCb** √s (TeV): 0.9 - 7 - 8 13 -14 **Upgrade** \mathcal{L} (cm⁻²s⁻¹): 10^{32} $3-4x10^{32}$ $4x10^{32}$ $20 - 30 \times 10^{32}$ $\int \mathcal{L}dt$ 3 fb⁻¹ 8 fb⁻¹ $> 50 \text{ fb}^{-1}$

Current upgrade plan still compatible with post LS3 ...

VEnes LHCL

Main challenges for the Velo Upgrade

Non uniform Radiation exposure

8 x 10¹⁵ n_{eq}/cm² @ tip, 0.2 x 10¹⁵ n_{eq}/cm² @ outer edge

HV tolerance

1000V after 50 fb⁻¹

Readout data rate

~33tracks/Event/module. (LHC: 40 MHz)

Temperature operation

-20 @ tip close to the beam

ASIC power consumption

3W/ASIC; up to 36 W/module;

Material budget

Good IP and tracking resolution currently:

- Proper time resolution ~ 50 fs
- IP resolution ~ 40 μm (p_T=1GeV)

Upgrade Plan

Keep vacuum and motion features.

Changes to improve

- From strips to pixels: Planar Sensors 55x55 μm² pixel.
 - Fast and robust pattern recognition.
- Cooling interface needs to come closer to the tip.
 - Plan to use μ-channels etched in a silicon substrate. (see P. Rodriguez talk https://indico.cern.ch/event/192695/session/6/contribution/113)
- First active element at 5.1 mm from beam (was 8.2 mm)
- New RF-box required.

Silicon sensors

- Planar silicon, n-in-n or n-in-p under consideration
- Tile for 3 ASIC chips: ~ 43 x 14 mm, 200 μm thick
- 55x55 μm² pixels, elongated pixels at ASIC boundaries
- Non homogeneous irradiation sets constraints on guard ring design
 - Tip close to beam: $8 \times 10^{15} \, n_{eq}$, far corner only at $2 \times 10^{14} \, n_{eq}$
 - guard ring width ~450 μm
 - Bias of 1000V after 50 fb⁻¹

~43mm

Silicon sensors

Focus on two vendors with proven track record in radiation hard and HV tolerant sensor designs:

VELO PIXEL Layout (Draft)

TS TS TS 3x1 PIXEL 3x1 PIXEL Single Single P(X 3x1 PIXEL 3×1 PIXEL Single PDX Single 3x1 PDEL 3x1 PIXEL Single 3x1 PIXEL 3x1 PDXEL Single PIX 3x1 PIXEL 3x1 PIXEL Single PIX 3x1 PIXEL 3x1 PDXEL 3x1 PDEL 3x1 PIXEL

n-in-p, 200 um thick

450 um guard ring

3x1 and single-ASIC sensors

Micron

HPK

n-in-n or n-in-p, 150/200 um

Baseline of 450 um guard ring

 Possibility of reduced width guard rings (250um) and overlapping guard rings on backside in n-in-n case

> Irradiation and test beam program to validate Sensor and ASIC tech at high rates.

--- This year!

TimePix3 chips

VELOPIX ASIC

Preamp Out

Clk (40MHz)

Disc Out

- MediPix → TimePix → Timepix3 → VELOPix
 - VeloPix designed by CERN and Nikhef
- Square matrix of 256 x 256.
- Technology resistant to required ~400 MRad.
- Key features
 - Data driven readout:
 Each hit time-stamped,
 sent off chip immediately
 - Fast front-end: time walk < 25 ns</p>
 - Bunch crossing time stamping9 bit
 - SEU protection
- VeloPix output hit-rate = ~10 x TimePix3 rate
- Binary readout but optional ADC (slow) for calibration
- Chips will be thinned to 200 μm: minimize material

VeloPix challenges

- Average # particles / chip / event
 - average (peak) rate: multiply by 26.8 (40) MHz
- Hottest chip →230 (320) Mtracks/s ~ 600 (900) Mhits/s per chip
 - grouping of pixel hits
 2x4 super pixels → 30 % data reduction
 - increase output bandwidth
 - optimize buffering
- Output bandwidth of (hottest) VeloPix:
 - Average: 13 Gbit/s; peak: 20 Gbit/s
 - 4 links at ~ 5 Gbit/s
- for first submission summer 2014
- Production quantity chips end 2015

Cooling: micro channel substrate

- Power consumption can go up to ~45 W/module.
- Keep the sensors at < -20 °C to minimize the effects of radiation damage, and to avoid thermal runaway
- Novel method: evaporate CO₂ via micro-channels etched in Si substrate
 Same Thermal Expansion Coefficient (CTE)

VE_{ns} LH

Cooling: micro channel substrate

- Power consumption can go up to ~45 W/module.
- Keep the sensors at < -20 °C to minimize the effects of radiation damage, and to avoid thermal runaway
- Novel method: evaporate CO₂ via micro-channels etched in Si substrate
 Same Thermal Expansion Coefficient (CTE)

L-shape Pixel Modules

- A 'module' is made of 4 sensor tiles.
 - active area ~100% (except small gaps)
 - Closest pixel is at 5.1 mm from the beam center

Kazu Akiba

TIPP2014

LHCb

Data acquisition overview

- LHCb common DAQ boards (PCIE40)
- 48 copper links from chips.
 - Hotter chips demand higher speeds
- Electrical to optical conversion outside of vacuum tank
 - 20 Optical links ~5 Gbit/s each
- 1 FPGA to time order events of 1 module

Upgrade RF Foil

- Requirements
 - Vacuum tight (< 10⁻⁹ mbar l/s)
 - Radiation hard
 - Low Mass
 - Good electrical conductivity
 - Thermally stable and conductive
- Material and fabrication:
 - •Aluminium (AlMgMn): 200-350 µm thickness:
 - •By 5-axis milling of a single homogeneous block
- Chemical etching

Upgrade RF Foil

Summary

- We plan to install a fully upgraded detector in the LS2/2018
- With a 40 MHz "triggerless" readout
- Run @ L = 2×10^{33} cm⁻² s⁻¹ (5×10^{33} cm
- Velo subdetector will consist planar silicon pixel sensors with 55 x 55 μm² pitch
 - Get closer to the collision point
 - Minimize the material
- New ASIC VELOPix with 20 Gbit/s output bandwidth
- Evaporative CO₂ cooling in Silicon with a micro-channel substrate as interface
- 300 μm thick RF-box milled from solid block of Aluminum
- Developments for the upgrade going well and on schedule

The LHCb VELO upgrade is a very challenging project with many new techniques

VE res LHCb

Back up

Electronics overview

LHCb Upgrade Overview

LHCb

VeloPix ASIC

Specification	Timepix3	VeloPix
pixel dimension	$55x55 \ \mu m^2$	$55x55 \ \mu m^2$
matrix size	256x256	256x256
timewalk	< 25 ns	< 25 ns
Time over Threshold range	10 bit	4 bit
leakage current compensation	> 20 nA	> 20 nA
(per pixel)		
Time stamp resolution	1.6 ns	25 ns
Time stamp range	18 bit	12 bit
sustainable hit rate	40 MHits/s	> 600 MHits/s
output bandwidth	$2.5 \; \mathrm{Gbit/s}$	> 13.6 Gbit/s
power consumption per chip	< 2 Watts	< 3 Watts
radiation hardness	no spec.	> 400 MRad
single event upset robust	no	yes

Main challenges for the Velo Upgrade

- Completely new front-end electronics and sensor
 - Fast analogue pulse, Ultra fast read out readout every bunch crossing.
 - High radiation hardness of ~ 400 MRad 8 x 10¹⁵ n_{eq}/cm²
- Very high data rate
 - Major changes to front-end back-end electronics and data transport
- Improve the cooling performance
 - Thermal Runaway risk at inner most region
 - New cooling interface design.
- Improve the physics performance... currently:
 - Proper time resolution ~ 50 fs
 - IP resolution ~ 13 + 25/pT μm

VE_{us} LHCb

Upgrade of the LHCb VErtex LOcator

QUICK Current detector overview

Upgrade motivation

VELO Upgrade plan

Upgrade R&D

Sensors

ASIC

Cooling

Infrastructure

Summary

International Conference on Technology and Instrumentation in Particle Physics

2 – 6 June 2014 / Amsterdam, The Netherlands

"Instrumentation as enabler of Science"