

Progress in Developing a Spiral Fiber Tracker for the J-PARC E36 Experiment

June 2–6, 2014 Amsterdam, Netherlands

Makoto Tabata^{1,2}, Keito Horie³, Youichi Igarashi⁴, Jun Imazato⁴, Hiroshi Ito²,

Alexander Ivashkin⁵, Hideyuki Kawai², Yury Kudenko⁵, Oleg Mineev⁵, Suguru Shimizu³, Akihisa Toyoda⁴, Hirohito Yamazaki⁶ On behalf of the J-PARC TREK/E36 Collaboration

¹Japan Aerospace Exploration Agency (JAXA), Japan, ²Chiba University, Japan, ³Osaka University, Japan, ⁴High Energy Accelerator Research Organization (KEK), Japan, ⁵Institute for Nuclear Research (INR), Russia, ⁶Tohoku University, Japan

Highlights

- We are developing a spiral fiber tracker based on plastic scintillating fibers for the J-PARC E36 experiment.
- In a bench test, we obtained a charged particle detection efficiency of 99.8% in a prototype 2-layer fiber ribbon.
- The actual spiral fiber tracker was successfully assembled around a K+ stopping active target holder.

References

- TREK Collaboration, J-PARC E36 Proposal.
- J.A. Macdonald, et al., Nucl. Instrum. Methods A 506 (2003) 60.

Introduction

- TREK/E36 experiment at the Proton Synchrotron of the J-PARC center, Japan
 - Test of lepton flavor universality
 - Precise measurement of $R_K = \Gamma(K^+ \rightarrow e^+ \nu) / \Gamma(K^+ \rightarrow \mu^+ \nu)$ using stopped K^+
 - Search for heavy sterile neutrino
 - Search for light U(1) gauge boson (dark photon)
- Charged decay particle detection
 - Momentum measurement (tracking) and efficiency control
 - Spiral fiber tracker (SFT)
 - 3 layers of multiwire proportional chambers (C2, C3, and C4)
 - Particle identification
 - Threshold aerogel Cherenkov counters (AC) with n = 1.08, TOF counters, and Pb-glass Cherenkov counters (PGC)

Design of the Spiral Fiber Tracker

- φ1-mm double-clad plastic scintillating fiber (SCSF-78, Kuraray Co., Ltd.)
 - Glueing 15 or 17 fibers to create 1-layer flat ribbon
 - ~5 m per ribbon (~attenuation length)
 - Clear fiber extension with low transmission loss (total ~11 m per ribbon)
- Coiling the ribbons around K⁺ target holder (AC/TOF aluminum pipe support)
- 4 ribbon layers in 2 helicities
 - Inner (1st + 2nd) layers: 15 fibers in L-helicity
 - Outer (3rd + 4th) layers: 17 fibers in R-helicity
 - Staggered fiber configuration (1-side glueing)
- MPPC readout with EASIROC module
- 128 ch = 15 fibers \times 2 ends \times 2 layers + 17 fibers \times 2 ends \times 2 layers
- Using tracking information by an active scintillation K⁺ stopping target

- Redundant tracking configuration
 - Reliable momentum determination
- At least 4-point tracking for robust analysis
 - Track segments before and after magnetic field
- At least 3-of-4 point tracking for efficiency control, 4-of-5 point tracking desirable for better accuracy (additional C1 tracker)

Bench Test

- Prototype fiber ribbon preparation
 - Glueing 16 fibers to create 1-layer ribbon by Moderation-Line Co., Ltd.
 - 1.5 m, 1 ribbon available
 - Bundling the fiber edge to connect them with photodetectors
- Bench test using ⁹⁰Sr β ray source in March 2014
 - Measuring minimum ionization particle detection efficiency of SFT prototype
 - Irradiating 2-layer and 1-layer ribbons
 - 2-layer ribbon formed by rounding 1 ribbon
 - Photomultiplier readout (MPPC readout not ready)
 - Upstream trigger counter based on a bundle of ϕ 0.2- mm plastic scintillating fibers
 - Downstream trigger counter based on a plastic scintillating block (H5:W10:T5 mm³)
- Results
 - Detection efficiency
 - 2-layer ribbon (staggered configuration)
 - 99.8% (1 p.e. threshold)
 - cf. 1-layer ribbon
 - 78.3%

1st + 2nd layers L-helicity 3rd + 4th layers R-helicity Kapton film Dummy target holder

In April 2014

- 1. Preparing a dummy target holder to work on a table
 - Same diameter with an actual target holder (ϕ 79 mm)
 - Wrapped by thin kapton film to easily unmount coiled fiber ribbons
- 2. Coiling the fiber ribbons for 1st and 2nd layers around the kapton sheet
- L-helicity

 3. Coiling the fiber ribbons for 3rd and
 - 4th layers around the 1st–2nd layers
 R-helicity
- Fixed by mylar tape
- 4. Light-shielding the fibers
- 5. Glueing a coupler to the fiber edge• Fiber coupler connecting a MPPC
- 6. Polishing the fiber terminus to remove redundant glue
- 7. Transferring the coiled fiber ribbons with the kapton sheet from the dummy holder to the actual target holder

Coupler

Fiber

