

Micromegas for sampling calorimetry

M. Chefdeville on behalf of the LC-detector group of CNRS/IN2P3/LAPP, Annecy TIPP conference, Amsterdam 2-6 June 2014

Outline

Calorimetry with gaseous detectors

Pros & cons, the case of Particle Flow, Expected Performance

Large-area Micromegas

Design Constraints, Operational characteristics, Shower Measurements

Resistive Micromegas

Sparking, Charging-up & Linearity, Future Plans

GASEOUS CALORIMETRY & PARTICLE FLOW

Pros: Cheap, large areas instrumented with a single sensor, readout easily segmented insensitive to neutrons in H-free gas mixtures (narrower showers)

MPGD: age well (Ar/CO₂), sustain heavy dose and high rates, non-uniformity under control

But: low sampling fraction $(10^{-5}) \rightarrow$ Intrinsic energy resolution is modest

Imaging (Particle Flow) calorimetry

Use the most precise detector to measure particles in jets Jet energy resolution of 3-4% possible with modest calorimeter resolution

 \rightarrow Granular calorimeters + precise tracker + sophisticated algorithms

Targeted granularity

- \rightarrow Si/W ECAL for ILD
- \rightarrow Gas/Fe HCAL for SiD

100 M cells of 5x5 mm² 30 M cells of 1x1 cm²

DIGITAL HADRON CALORIMETRY

Extreme granularity for HCAL

Reduce power-consumption & heat gradient with simple threshold electronics \rightarrow Digital HCAL or DHCAL

Saturation & energy resolution

Cell size (1x1 cm²) is of the order of the (Molière radius)². π

Offline compensation based on the information from additional thresholds or hit density

LARGE-AREA MICROMEGAS for the SDHCAL

Active medium

Proportional response, large dynamic range, low noise, good uniformity

Mechanics

Longitudinal segmentation \rightarrow compact design (1 cm / layer), minimal dead zones (large-area)

Electronics

Lateral segmentation \rightarrow large number of channels, power-pulsing, self-triggering+memory

Active Sensor Unit, 32x48 $cm^2 \rightarrow 1x1 m^2$ prototype

PCB with pads, font-end electronics (ASIC), flat inter-connects and Bulk Micromegas

June 2nd, 2014

Requirements

TESTBEAMS

4 Micromegas prototypes of 1x1 m² constructed

Tested at CERN without and inside the CALICE RPC-SDHCAL

Standalone test

150 GeV muons and pions \rightarrow operational characteristics

Inside the SDHCAL

Use RPCs to identify shower start \rightarrow shower profiles with Micromegas only

CALICE SDHCAL

50 k pion shower events

RESPONSE TO HIGH-ENERGY MUONS

Response measurement

Beam muons (20-150 GeV) traverse the SDHCAL Use RPC layers as telescope \rightarrow test Micromegas layers over whole area Build ASIC map \rightarrow 144 regions of 8x8 cm²

Excellent uniformity \rightarrow good for calorimeter resolution at high energy (small constant term)

June 2nd, 2014

NOISE DURING OPERATION (1/2)

Threshold settings: 1-2 fC achieved, S/N of 20 at working gas gain of 1500 ASIC (MICROROC) noise at preamlifier input is 0.25 fC \rightarrow 5 σ threshold of 1.25 fC A DAC can be used to reduce the pedestal spread to 0.25 fC RMS

Noise measurement

SDHCAL is self-triggered \rightarrow records everything until 1 ASIC memory is full Number of hits recorded during the time between physics events \rightarrow noise rate

Time spectrum of hits in RPC-SDHCAL

NOISE DURING OPERATION (2/2)

Readout when 1 ASIC memory is full (127 event depth) \rightarrow relevant quantity is noise rate / ASIC 1 Hz/ASIC is achieved. Stable with time.

Compared to clock period of 200 ns \rightarrow Negligible event contamination by noise & impact on resolution Compared to ILC spill-time of 1 ms \rightarrow No dead-time during collisions (full use of luminosity)

EFFECT of SHOWER RATE on RESPONSE

Response = distribution of number of hits per shower

Standalone setup = 150 GeV focused on 2 λ_{int} thick iron block + Micromegas prototypes downstream

 \rightarrow 90% of pions are showering inside the block & Shower energy is on average highest at the rear of the block

SPARKING in HADRON SHOWERS

Same setup. Identify sparks as current peaks on HV slow-control system

Count peaks and divide by the expected number of 150 GeV pion showers during spills

 \rightarrow spark probability per showering pions

PION SHOWER PROFILE (in a virtual Micromegas SDHCAL)

SDHCAL with 46 RPC and 4 Micromegas

Identify shower starting layer ($\sigma = \lambda_{int} \sim 10$ layers) & measure number of hits in Micromegas layers

 \rightarrow N_{hit} distribution at various depths w.r.t. shower starting layer \rightarrow longitudinal profile

Shower profile measured at 20...150 GeV

Fit the right function and integrate \rightarrow mean N_{hit} that would be measured in a Micromegas-SDHCAL

Calorimeter response for 3 values of threshold, expected saturation observed

(data being used to validate Monte-Carlo)

INTEREST for RESISTIVE MICROMEGAS

Beyond ILC: CMS is planning an upgrade of its forward calorimeters Particle Flow option: GEM or Micromegas for the backing part → particle rates of several tens of kHz/cm² expected

1x1 m² prototypes: Diodes on PCB (pads to preamps) & also integrated in ASIC \rightarrow many components on PCB + does not quench discharge

Resistive coatings: no sparks, simpler PCB design & lower overall cost

Open questions & Prototyping work

Impact on spark probability, dynamic range, proportionality, rate-capability, hit multiplicity? Small prototypes of 16x16 cm² with charge evacuation on PCB sides and through PCB.

HV SCAN, SPARKING

DESY testbeam

Stack of resistive & non-resistive (or standard) prototypes Electron beam (1-5 GeV), Ar/CO₂ 90/10, digital + analogue readout

In 1 kHz electron beam

Picked-up *signal in resistive prototypes is smaller* (@ given HV) The 2 resistive configurations show *suppression of sparking*

RATE SCAN, EFFICIENCY

At low rates, the responses to traversing electrons of std. & resistive prototypes are similar efficiency larger than 95% & hit multiplicity below 1.15

Threshold-dependent loss of efficiency with rate (beam spot $2x2 \text{ cm}^2$) in resistive prototypes

June 2nd, 2014

LINEARITY in e⁻ SHOWERS

At low rate (1 kHz/cm²), is linearity spoiled by resistive layer? → Comparison of analogue response of Std. & Res. prototypes

Measurement of Calorimeter EM-response with single layers

At various energies: add absorbers, measure signal distribution Build & integrate longitudinal profiles → EM-response

Slopes are different (downstream prototypes see more material), but linearity seems preserved

FURTHER STUDIES

Loss of signal observed at high rates (as loss of efficiency) but not observed for high energy deposits (as loss of EM-linearity) Should probably show up at higher energy (> 5 GeV)

Optimisation of resistivity for best linearity

→ New prototypes with coatings varying over a wide range of resistivity Common R&D project with IRFU (Saclay) and NCSR (Demokritos)

 \rightarrow testbeam SPS in 2015

CONCLUSIONS

Micromegas can be applied as a sensitive element in a sampling calorimeter at a future LC No calorimeter yet but single layers of 1x1 m² show excellent performance

While waiting for a LC, higher rate applications with resistive Micromegas are investigated Will resistive Micromegas be adequate for calorimetry? We'll find out!

!Thank you for your attention!

For more details:

Test in a beam of large-area Micromegas chambers for sampling calorimetry arXiv:1405.1024 [physics.ins-det]

Construction and test of a 1×1 m2 Micromegas chamber for sampling hadron calorimetry at future lepton colliders Nucl.Instrum.Meth. A729 (2013) 90-101